Journal of Tea Science ›› 2019, Vol. 39 ›› Issue (5): 495-505.doi: 10.13305/j.cnki.jts.2019.05.001
LIN Shijia, LI Hui, LIU Hao, TENG Ruimin, LIU Jingyu, WANG Shuang, ZHUANG Jing*
Received:
2019-05-08
Revised:
2019-07-12
Online:
2019-10-15
Published:
2019-10-15
LIN Shijia, LI Hui, LIU Hao, TENG Ruimin, LIU Jingyu, WANG Shuang, ZHUANG Jing. Cloning and Response Analysis of the CsMDHAR Gene Under the Abiotic Stress in Camellia sinensis[J]. Journal of Tea Science, 2019, 39(5): 495-505.
[1] | 陈宗懋. 饮茶与健康的起源和历史[J]. 中国茶叶, 2018, 40(10): 5-7. |
[2] | Wang W, Xin H, Wang M, et al.Transcriptomic analysis reveals the molecular mechanisms of drought-stress-induced decreases in Camellia sinensis leaf quality[J]. Frontiers in Plant Science, 2016, 7(795): 385. DOI: 10.3389/fpls.2016.00385. |
[3] | Gill S S, Tuteja N.Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12): 909-930. |
[4] | Cervilla L M, Blasco B, Ríos J J, et al.Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity[J]. Annals of Botany, 2007, 100(4): 747-756. |
[5] | Garchery C, Gest N, Do P T, et al.A diminution in ascorbate oxidase activity affects carbon allocation and improves yield in tomato under water deficit[J]. Plant Cell & Environment, 2013, 36(1): 159-175. |
[6] | Alvina Grace L, Doherty C J, Bernd M R, et al.CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(42): 17129-17134. |
[7] | Wang Z, Xiao Y, Chen W.Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis[J]. Journal of Integrative Plant Biology, 2010, 52(4): 400-409. |
[8] | Khalil O A K, Vellosa J C R, Quadros A U D, et al. Curcumin antifungal and antioxidant activities are increased in the presence of ascorbic acid[J]. Food Chemistry. 2012, 133(3): 1001-1005. |
[9] | Mi Y L, Pulla R K, Park J M, et al.Over-expression of L-gulono-γ-lactone oxidase (GLOase) gene leads to ascorbate accumulation with enhanced abiotic stress tolerance in tomato[J]. In Vitro Cellular & Developmental Biology - Plant, 2012, 48(5): 453-461. |
[10] | 陈莉, 辛海波, 李晓艳, 等. 百合MDHAR基因的克隆与表达分析[J]. 林业科学. 2010, 46(9): 178-181. |
[11] | 邹礼平. 番茄抗坏血酸生物合成与代谢途径中相关酶基因的克隆与调控[D]. 武汉: 华中农业大学, 2005. |
[12] | 邓春婷. 番茄抗坏血酸代谢相关酶基因DHAR1和MDHAR1在抗逆方面的研究[D]. 武汉: 华中农业大学, 2009. |
[13] | 刘巍. 小麦抗条锈病基因Yr10及防卫相关基因TaMDHAR4的功能分析[D]. 杨凌: 西北农林科技大学, 2014. |
[14] | 李佼. 茶树抗坏血酸生物合成相关酶基因的克隆与表达分析[D]. 杨凌: 西北农林科技大学, 2013. |
[15] | 庞磊. 茶树抗坏血酸过氧化物酶(APX)基因克隆及逆境胁迫下的表达特性与生理响应[D]. 合肥: 安徽农业大学, 2012. |
[16] | Wu Z J, Li X H, Liu Z W, et al.De novo assembly and transcriptome characterization: novel insights into catechins biosynthesis in Camellia sinensis[J]. BMC Plant Biology, 2014, 14(1): 277. DOI: 10.1186/s12870-014-0277-4. |
[17] | Kumar S, Stecher G, Tamura K.MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology & Evolution, 2016, 33(7): 1870-1874. |
[18] | Wu Z J, Tian C, Jiang Q, et al.Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant (Camellia sinensis)[J]. Scientific Reports, 2016, 6: 19748. DOI: 10.1038/srep19748. |
[19] | Li H, Liu Z, Wu Z J, et al.Differentially expressed protein and gene analysis revealed the effects of temperature on changes in ascorbic acid metabolism in harvested tea leaves[J]. Horticulture Research, 2018, 5(1): 65. DOI: 10.1038/s41438-018-0070-x. |
[20] | Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the <inline-graphic xlink:href="1000-369X-39-5-495/img_1.wmf"/> method[J]. Methods, 2001, 25(4): 402-408. |
[21] | Gasteiger E, Gattiker A, Hoogland C, et al.ExPASy: the proteomics server for in-depth protein knowledge and analysis[J]. Nucleic Acids Research, 2003, 31(13): 3784-3788. |
[22] | Haroldsen V M, Chi-Ham C L, Shashank K, et al. Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato[J]. Plant Physiology & Biochemistry, 2011, 49(10): 1244-1249. |
[23] | Mande S S, Sarfaty S, Allen M D, et al.Protein-protein interactions in the pyruvate dehydrogenase multienzyme complex: dihydrolipoamide dehydrogenase complexed with the binding domain of dihydrolipoamide acetyltransferase[J]. Structure, 1996, 4(3): 277-286. |
[24] | Park A K, Kim I S, Do H, et al.Structure and catalytic mechanism of monodehydroascorbate reductase, MDHAR, from Oryza sativa L. japonica[J]. Scientific Reports, 2016, 6: 33903. DOI: 10.1038/srep33903. |
[25] | Urao T, Yamaguchi-Shinozaki K, Urao S, et al.An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence[J]. The Plant Cell, 1993, 5(11): 1529-1539. |
[26] | Stephan W, Franziska T, Kamy S, et al.CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis[J]. The Plant Cell, 2006, 18(11): 2971-2984. |
[27] | 林源秀, 顾欣昕, 吴宛玲, 等. 草莓FaMDHAR和FaGR的克隆与表达分析[J]. 园艺学报, 2015, 42(7): 1241-1250. |
[28] | 马玉华. 逆境胁迫对苹果抗坏血酸代谢相关酶活性及基因表达的影响[D]. 杨凌: 西北农林科技大学, 2008. |
[29] | Zhang Y Y, Li H X, Shu W B, et al.RNA interference of a mitochondrial APX gene improves vitamin C accumulation in tomato fruit[J]. Scientia Horticulturae, 2011, 129(2): 220-226. |
[30] | Zhang Y, Li H, Shu W, et al.Suppressed expression of ascorbate oxidase gene promotes ascorbic acid accumulation in tomato fruit[J]. Plant Molecular Biology Reporter, 2011, 29(3): 638-645. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|