Journal of Tea Science ›› 2019, Vol. 39 ›› Issue (5): 506-520.doi: 10.13305/j.cnki.jts.2019.05.002
Previous Articles Next Articles
HUANG Danjuan1, TAN Rongrong1, CHEN Xun1, WANG Hongjuan1, GONG Ziming1, WANG Youping2, MAO Yingxin1, *
Received:
2019-05-21
Revised:
2019-06-28
Online:
2019-10-15
Published:
2019-10-15
CLC Number:
HUANG Danjuan, TAN Rongrong, CHEN Xun, WANG Hongjuan, GONG Ziming, WANG Youping, MAO Yingxin. Transcriptome Analysis of Root Induced by Aluminum in Tea Plants (Camellia sinensis)[J]. Journal of Tea Science, 2019, 39(5): 506-520.
[1] | Ma J F, Chen Z C, Shen R F.Molecular mechanisms of Al tolerance in gramineous plants[J]. Plant and Soil, 2014, 381(1/2): 1-12. |
[2] | Hajiboland R, Rad S B, Barcelo J, Poschenrieder C.Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis)[J]. Journal of Plant Nutrition and Soil Science, 2013, 176(4): 616-625. |
[3] | 王敏, 宁秋燕, 石元值. 茶树幼苗对不同浓度铝的生理响应差异研究[J]. 茶叶科学, 2017, 37(4): 337-346. |
[4] | Morita A, Yanagisawa O, Maeda S, et al.Tea plant(Camellia sinensis L.) roots secrete oxalic acid and caffeine into medium containing aluminum[J]. Journal of Soil Science and Plant Nutrition, 2011(57): 796-802. |
[5] | 刘腾腾, 郜红建, 宛晓春, 等. 铝对茶树根细胞膜透性和根系分泌有机酸的影响[J]. 茶叶科学, 2011, 31(5): 458-462. |
[6] | 疏再发. 根系有机酸和细胞壁果胶甲酯化参与茶树耐铝/解铝毒机制的研究[D]. 南京: 南京农业大学, 2016: 30-31. |
[7] | Li D Q, Shu Z F, Ye X L, et al.Cell wall pectin methyl-esterification and organic acids of root tips involve in aluminum tolerance in Camellia sinensis[J]. Plant Physiology and Biochemistry, 2017, 119: 265-274. |
[8] | Tolrà R, Vogel-Miku K, Hajiboland R, et al.Localization of aluminium in tea ( Camellia sinensis ) leaves using low energy X-ray fluorescence spectro-microscopy[J]. Journal of Plant Research, 2011, 124(1): 165-172. |
[9] | Hajiboland R, Poschenrieder C.Localization and compartmentation of Al in the leaves and roots of tea plants[J]. Phyton, 2015, 84(1): 86-100. |
[10] | Gao H J, Zhao Q, Zhang X C, et al.Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots[J]. Journal of Agricultural and Food Chemistry, 2014, 62(10): 2313-2319. |
[11] | Panda S K, Sahoo L, Katsuhara M, et al.Overexpression of alternative oxidase gene confers aluminum tolerance by altering the respiratory capacity and the response to oxidative stress in tobacco cells[J]. Molecular Biotechnology, 2013, 54(2): 551-563. |
[12] | Larsen P B, Geisler M J, Jones C A, et al.ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis[J]. The Plant Journal, 2005, 41(3): 353-363. |
[13] | Larsen P B, Cancel J, Rounds M, et al.Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment[J]. Planta, 2007, 225(6): 1447-1458. |
[14] | Arenhart R A, Bai Y, Oliveira L F, et al.New insights into aluminum tolerance in rice: the ASR5 protein binds the STAR1 promoter and other aluminum-responsive genes[J]. Molecular Plant, 2014, 7(4): 709-721. |
[15] | Yokosho K, Yamaji N, Ma J F.Global transcriptome analysis of Al-induced genes in an Al-accumulating species, common buckwheat (Fagopyrum esculentum Moench)[J]. Plant and Cell Physiology. 2014, 55(12): 2077-2091. |
[16] | Chen H, Lu C P, Jiang H, et al.Global transcriptome analysis reveals distinct aluminum-tolerance pathways in the Al-accumulating species Hydrangea macrophylla and marker identification[J]. PLoS One, 2015, 10(12): e0144927. DOI: 10.1371/journal.pone.0144927. |
[17] | Kobayashi Y, Hoekenga O A, Itoh H, et al.Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in Arabidopsis[J]. Plant Physiology, 2007, 145(3): 843-852. |
[18] | Liu J, Jurandir V, Magalhaes J V, et al.Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance[J]. The Plant Journal. 2009, 57(3): 389-399. |
[19] | Yamaji N, Huang C F, Nagao S, et al.A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice[J]. Plant Cell, 2009, 21(10): 3339-3349. |
[20] | Sawaki Y, Iuchi S, Kobayashi Y, et al.STOP1 regulates multiple genes that protect Arabidopsis from proton and aluminum toxicities. Plant Physiology[J]. 2009, 150(1): 281-294. |
[21] | Sawaki Y, Kobayashia Y, Kihara-Doic T, et al.Identification of a STOP1-like protein in Eucalyptus that regulates transcription of Al tolerance genes[J]. Plant Science, 2014, 223: 8-15. |
[22] | Huang C F, Yamaji N, Mitani N, et al.A bacterial-type ABC transporter is involved in aluminum tolerance in rice[J]. Plant Cell, 2009, 21(2): 655-667. |
[23] | Xu Q S, Wang Y, Ding Z T, et al.Aluminum induced physiological and proteomic responses in tea (Camellia sinensis) roots and leaves[J]. Plant Physiology and Biochemistry, 2017, 115: 141-151. |
[24] | Li Y, Huang J, Song X W, et al.An RNA-Seq transcriptome analysis revealing novel insights into aluminum tolerance and accumulation in tea plant[J]. Planta, 2017, 246(1): 91-103. |
[25] | Zhao H, Huang W, Zhang Y G, et al.Natural variation of CsSTOP1 in tea plant (Camellia sinensis) related to aluminum tolerance[J]. Plant and Soil, 2018, 431(1/2): 71-87. |
[26] | Fan K, Wang M, Gao Y, et al.Transcriptomic and ionomic analysis provides new insight into the beneficial effect of al on tea roots’ growth and nutrient uptake[J]. Plant Cell Reports, 2019, 38(6): 715-729. |
[27] | 宁秋燕. 茶树根系中XTHs和Expansins对不同浓度铝的响应研究[D]. 北京: 中国农业科学院研究生院, 2018: 29-31. |
[28] | 曹红利. 茶树bZIP家族基因的非生物胁迫响应及C亚家族CsbZIP6和CsbZIP4的功能初步分析[D]. 北京: 中国农业科学院研究生院, 2016: 16-17. |
[29] | Wei C L, Yang H, Wang S B, et al.Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proc Natl Acad Sci USA, 2018, 115(18): 4151-4158. |
[30] | Mortazavi A, Williams B A, McCue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature Methods, 2008, 5(7): 621-628. |
[31] | Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the <inline-graphic xlink:href="1000-369X-39-5-506/img_1.wmf"/> Method[J]. Methods, 2001, 25(4): 402-408. |
[32] | Mukhopadyay M, Bantawa P, Das A, et al.Changes of growth, photosynthesis and alteration of leaf antioxidative defense system of tea [Camellia sinensis (L.) O. Kuntze] seedlings under aluminum stress[J]. Biometals, 2012, 25(6): 1141-1154. |
[33] | Li C L, Xu H M, Xu J, et al.Effects of aluminium on ultrastructure and antioxidant activity in leaves of tea plant[J]. Acta Physiologiae Plantarum, 2011, 33(3): 973-978. |
[34] | Richards K D, Schott E J, Sharma Y K, et al.Aluminum induces oxidative stress genes in Arabidopsis thaliana[J]. Plant Physiology, 1998, 116(1): 409-418. |
[35] | Chowra U, Yanase E, Koyama H, et al.Aluminium-induced excessive ROS causes cellular damage and metabolic shifts in black gram Vigna mungo (L.) Hepper[J]. Protoplasma, 2017, 254(1): 293-302. |
[36] | Ezaki B, Gardner R C, Ezaki Y, et al.Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress[J]. Plant Physiology, 2000, 122(3): 657-665. |
[37] | 李勇. 茶树响应铝的遗传变异及铝富集候选基因挖掘[D]. 武汉: 华中农业大学, 2017: 36. |
[38] | You J F, Zhang H M, Liu N, et al.Transcriptomic responses to aluminum stress in soybean roots[J]. Genome, 2011, 54(11): 923-933. |
[39] | Guo P, Qi Y P, Yang L T, et al.Root adaptive responses to aluminum-treatment revealed by RNA-Seq in two Citrus species with different aluminum-tolerance[J]. Front in Plant Science, 2017, 8: 330. DOI: 10.3389/fpls.2017.00330. |
[40] | 王晓珠, 孙万梅, 马义峰, 等. 拟南芥ABC转运蛋白研究进展[J].植物生理学报, 2017, 53(2): 133-144. |
[41] | Li J Y, Liu J, Dong D, et al.Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance[J]. Proc Natl Acad Sci USA, 2014, 111(17): 6503-6508. |
[42] | Zhang H, Tan Z Q, Hu L Y, et al.Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings[J]. Journal of Integrative Plant Biology, 2010, 52(6): 556-567. |
[43] | Dawood M, Cao F, Jahangir M M, et al. Alleviation of aluminum toxicity by hadrogen suilfide is related to elevated ATPase,suppressed aluminum uptake and oxidative stress in barley [J]. Journal of Hazardous Materials, 2012, 209/210: 121-128. |
[44] | Guo P, Li Q, Qi Y P, et al.Sulfur-Mediated-Alleviation of Aluminum-Toxicity in Citrus grandis seedlings[J]. International Journal of Molecular Sciences, 2017, 18(12): 2570. DOI: 10.3390/ijms18122570. |
[45] | Negishi T, Oshima K, Hattori M, et al.Tonoplast- and plasma membrane-localized aquaporin-family transporters in blue Hydrangea Sepals of aluminum hyperaccumulating plant[J]. PLoS One, 2012, 7(8): e43189. DOI: 10.1371/journal.pone.0043189. |
[46] | 范伟, 娄和强, 龚育龙, 等. 调控铝诱导根尖有机酸分泌的分子机制[J]. 植物生理学报, 2014, 50(10): 1469-1478. |
[47] | Chen L, Song Y, Li S, et al.The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica et Biophysica Acta, 2012, 1819(2): 120-128. |
[48] | Kumari M, Taylor G J, Deyholos K.Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana[J]. Molecular Genetics and Genomics, 2008, 279(4): 339-357. |
[49] | Goodwin S B, Sutter T R.Microarray analysis of Arabidopsis genome response to aluminum stress[J]. Biologia Plantarum, 2009, 53(1): 85-99. |
[50] | Ding Z J, Yan J Y, Xu X Y, et al. WRKY46 functions as a transcriptional repressor of ALMT1, regulating aluminum induced malate secretion in Arabidopsis[J]. The Plant Journal, 2013, 76(5): 825-835. |
[51] | Horst W J, Wang Y, Eticha D.The role of the root apoplast in aluminium-induced inhibition of root elongation and in aluminium resistance of plants: a review[J]. Annals of Botany, 2010, 106(1): 185-197. |
[52] | Teraoka T, Kaneko M, Mori S, et al.Aluminum rapidly inhibits cellulose synthesis in roots of barley and wheat seedlings[J]. Journal of Plant Physiology, 2002, 159(1): 17-23. |
[53] | Tabuchi A1, Matsumoto H. Changes in cell-wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition[J]. Physiology Plant, 2001, 112(3): 353-358. |
[54] | Potter I, Fry S C.Changes in xyloglucan endotransglycosylase (XET) activity during hormone-induced growth in lettuce and cucumber hypocotyls and spinach cell suspension cultures[J]. Journal of Experimental Botany, 1994, 45: 1703-1710. |
[55] | Chandran D, Sharopova N, Ivashuta S, et al.Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula[J]. Planta, 2008, 228(1): 151-166. |
[56] | Yang J L, Zhu X F, Peng Y X, et al.Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis[J]. Plant Physiology. 2011, 155(4): 1885-1892. |
[1] | WANG Liubin, HUANG Liyun, TENG Cuiqin, WU Liyun, CHENG Hao, YU Cuiping, WANG Liyuan. Genetic and Phylogenetic Analysis for Germplasm Resources of Camellia sinensis from Wuzhou City [J]. Journal of Tea Science, 2022, 42(5): 601-609. |
[2] | WU Jing, CHEN Nannan, HAN Menglin, CHEN Gao, LI Weiwei, ZHANG Shuxiang, JIANG Xiaolan. Isolation, Identification and Characterization of Aluminum-tolerant Growth-promoting Endophytic Bacteria in Tea Roots [J]. Journal of Tea Science, 2022, 42(5): 610-622. |
[3] | ZHOU Hanchen, YANG Jihong, XU Yujie, WU Qiong, LEI Pandeng. Phylogenetic Analysis of NUDX1 Gene Involved in Geraniol Biosynthesis [J]. Journal of Tea Science, 2022, 42(5): 638-648. |
[4] | XING Anqi, WU Zichen, XU Xiaohan, SUN Yi, WANG Genmei, WANG Yuhua. Research Advances of Fluoride Accumulation Mechanisms in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 301-315. |
[5] | WANG Tao, WANG Yiqing, QI Siyu, ZHOU Zhe, CHEN Zhidan, SUN Weijiang. Identification and Transcriptional Regulation of CLH Gene Family and Expression Analysis in Albino Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 331-346. |
[6] | LIU Fuhao, FAN Yangen, WANG Yu, MENG Fanyue, ZHANG Lixia. Screening and Identification of Chaperone CsHIPP26.1 Chelating Ions in Tea Cultivar ‘Huangjinya’ [J]. Journal of Tea Science, 2022, 42(2): 179-186. |
[7] | WANG Pengjie, YANG Jiangfan, ZHANG Xingtan, YE Naixing. Research Advance of Tea Plant Genome and Sequencing Technologies [J]. Journal of Tea Science, 2021, 41(6): 743-752. |
[8] | ZHOU Hanchen, LEI Pandeng. The Functional Identification of Two Alternative Splicing Transcripts of CsNES [J]. Journal of Tea Science, 2021, 41(6): 753-760. |
[9] | YAN Minghui, LIU Ke, WANG Man, LYU Ying, ZHANG Qian. Complete Chloroplast Genome of Camellia sinensis cv. Xinyang 10 and Its Phylogenetic Evolution [J]. Journal of Tea Science, 2021, 41(6): 777-788. |
[10] | JIAO Haizhen, SHAO Chenyu, CHEN Jianjiao, ZHANG Chenyu, CHEN Jiahao, LI Yunfei, SHEN Chengwen. Dynamic Changes of Physiological Responses and Antioxidant Enzyme Activities in Tea Root System under Severe Shading and Removal of Shading [J]. Journal of Tea Science, 2021, 41(5): 695-704. |
[11] | LIN Xinying, WANG Pengjie, CHEN Xuejin, GUO Yongchun, GU Mengya, ZHENG Yucheng, YE Naixing. Identification of LOX Gene Family in Camellia sinensis and Expression Analysis in the Process of White Tea Withering [J]. Journal of Tea Science, 2021, 41(4): 482-496. |
[12] | WANG Yanding, WANG Huan, LI Nana, WANG Lu, HAO Xinyuan, WANG Yuchun, DING Changqing, YANG Yajun, WANG Xinchao, QIAN Wenjun. Identification and Expression Analysis of Glucose-6-hosphate Dehydrogenase Gene (CsG6PDHs) in Camellia sinensis [J]. Journal of Tea Science, 2021, 41(4): 497-510. |
[13] | CHEN Siwen, KANG Rui, GUO Zhiyuan, ZHOU Qiongqiong, FENG Jiancan. Cloning and Expression Analysis of CsCML16 in Tea Plants (Camellia sinensis) under Low Temperature Stress [J]. Journal of Tea Science, 2021, 41(3): 315-326. |
[14] | ZHAO Yiqing, LIU Zhengjun, ZHANG Tianxin, ZHAO Yanting, XIAO Bin, GAO Yuefang. Cloning of CsCHLI Gene and Its Expression Analysis in Different Albino Tea Cultivars (Camellia sinensis) [J]. Journal of Tea Science, 2021, 41(3): 327-336. |
[15] | GUO Lingling, ZHANG Fen, CHENG Hao, WEI Kang, RUAN Li, WU Liyun, WANG Liyuan. Molecular Cloning and Expression Analysis of CsAAPs Gene Subfamily in Camellia Sinensis [J]. Journal of Tea Science, 2020, 40(4): 454-464. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|