Journal of Tea Science ›› 2019, Vol. 39 ›› Issue (6): 619-630.doi: 10.13305/j.cnki.jts.2019.06.001
ZHOU Fang1,2, OUYANG Jian1,2, HUANG Jian'an1,2,3, LIU Zhonghua1,2,3,*
Received:
2019-04-29
Revised:
2019-07-20
Online:
2019-12-15
Published:
2019-12-24
CLC Number:
ZHOU Fang, OUYANG Jian, HUANG Jian'an, LIU Zhonghua. Advances in Research on the Regulation of Tea Polyphenols and Effects on Intestinal Flora[J]. Journal of Tea Science, 2019, 39(6): 619-630.
[1] | Lozupone C A, Stombaugh J I, Gordon J I, et al.Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489(7415): 220-230. |
[2] | Chang C J, Lin C S, Lu C C, et al.Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota[J]. Nature Communications, 2015, 6(1): 7489. DOI: 10.1038/ncomms8489. |
[3] | Wu T R, Lin C S, Chang C J, et al.Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis[J]. Gut, 2019, 68(2): 248-262. |
[4] | Li J, Lin S, Vanhoutte P M, et al.Akkermansia Muciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in Apoe-/- Mice[J]. Circulation, 2016, 133(24): 2434-2446. |
[5] | Imhann F, Vich V A, Bonder M J, et al.Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease[J]. Gut, 2018, 67(1): 108-119. |
[6] | Ley R E, Fredrik B C, Peter T, et al.Obesity alters gut microbial ecology[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(31): 11070-11075. |
[7] | Turnbaugh P J, Ley R E, Manowald M A, et al.An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122): 1027-1031. |
[8] | Graham C, Mullen A, Whelan K.Obesity and the gastrointestinal microbiota: a review of associations and mechanisms[J]. Nutrition Reviews, 2015, 73(6): 376-385. |
[9] | Wang L, Zeng B, Zhang X, et al.The effect of green tea polyphenols on gut microbial diversity and fat deposition in C57BL/6J HFA mice[J]. Food & Function, 2016, 7(12): 4956-4966. |
[10] | Axling U, Olsson C, Xu J, et al.Green tea powder and Lactobacillus plantarum affect gut microbiota, lipid metabolism and inflammation in high-fat fed C57BL/6J mice[J]. Nutrition & Metabolism, 2012, 9(1): 105. DOI: 10.1186/1743-7075-9-105. |
[11] | 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003: 9-11. |
[12] | Sun H, Chen Y, Cheng M, et al.The modulatory effect of polyphenols from green tea, oolong tea and black tea on human intestinal microbiota in vitro[J]. Journal of Food Science and Technology, 2018, 55(1): 399-407. |
[13] | Guo X, Cheng M, Zhang X, et al.Green tea polyphenols reduce obesity in high-fat diet-induced mice by modulating intestinal microbiota composition[J]. International Journal of Food Science & Technology, 2017, 52(8): 1723-1730. |
[14] | Zhang X, Zhang M, Ho C-T, et al.Metagenomics analysis of gut microbiota modulatory effect of green tea polyphenols by high fat diet-induced obesity mice model[J]. Journal of Functional Foods, 2018, 46: 268-277. |
[15] | Jin J S, Touyama M, Hisada T, et al.Effects of green tea consumption on human fecal microbiota with special reference to Bifidobacterium species[J]. Microbiol Immunol, 2012, 56(11): 729-739. |
[16] | Janssens P L, Penders J, Hursel R, et al.Long-term green tea supplementation does not change the human gut microbiota[J]. PLoS One, 2016, 11(4): e0153134. DOI: 10.1371/journal.pone.0153134. |
[17] | Oritani Y, Setoguchi Y, Ito R, et al., Comparison of (-)-epigallocatechin-3-O-gallate (EGCG) and O-methyl EGCG bioavailability in rats[J]. Biological & Pharmaceutical Bulletin, 2013, 36(10): 1577-1582. |
[18] | Liu Z, Bruins M E, Ni L, et al.Green and black tea phenolics: bioavailability, transformation by colonic microbiota, and modulation of colonic microbiota[J]. Journal of Agricultural and Food Chemistry, 2018, 66(32): 8469-8477. |
[19] | Hsu C H, Tsai T H, Kao Y H, et al.Effect of green tea extract on obese women: A randomized, double-blind, placebo-controlled clinical trial[J]. Clinical Nutrition, 2008, 27(3): 363-370. |
[20] | Manach C.Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies[J]. The American Journal of Clinical Nutrition, 2005, 81(S1): 230S-242S. |
[21] | Yang C S, Chen L, Lee M J, et al.Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers[J]. Cancer epidemiology, Biomarkers & Prevention, 1998, 7(4): 351-354. |
[22] | Rodney J, Murphy, Angus S, et al.Uptake and retention of catechins by Caco-2 human intestinal cells are modulated by tea formulation following simulated digestion[J]. The Faseb Journal, 2007, 21(5): A730. |
[23] | Gan R Y, Li H B, Sui Z Q, et al.Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review[J]. Critical reviews in food science and nutrition, 2018, 58(6): 924-941. |
[24] | Scalbert A, Morand C, Manach C, et al.Absorption and metabolism of polyphenols in the gut and impact on health[J]. Biomedicine & Pharmacotherapy, 2002, 56(6): 276-282. |
[25] | Williamson G, Clifford M N.Colonic metabolites of berry polyphenols: the missing link to biological activity?[J]. British Journal of Nutrition, 2010, 104(S3): 48-66. |
[26] | Monagas M, Urpi-sarda M, Sánchez-patán N F, et al. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites[J]. Food & Function, 2010, 1(3): 233-253. |
[27] | Stalmach A, Mullen W, Steiline H, et al.Absorption, metabolism, and excretion of green tea flavan-3-ols in humans with an ileostomy[J]. Molecular Nutrition & Food Research, 2010, 54(3): 323-334. |
[28] | Feng Y, Wan. Metabolism of Green Tea Catechins: An Overview[J]. Current Drug Metabolism, 2006, 7(7): 755-809. |
[29] | Remely M, FerkF, Sterneder S, et al. EGCG prevents high fat diet-induced changes in gut microbiota, decreases of dna strand breaks, and changes in expression and DNA methylation of Dnmt1 and MLH1 in C57BL/6J male mice[J]. Oxidative Medicine and Cellular Longevity, 2017, 2017: 3079148. DOI: 10.1155/2017/3079148. |
[30] | Williamson G, Clifford M N.Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols[J]. Biochemical Pharmacology, 2017, 139: 24-39. |
[31] | Kemperman R A, Bolca S, Roger L C.Novel approaches for analysing gut microbes and dietary polyphenols: challenges and opportunities[J]. Microbiology, 2010, 156(11): 3224-3231. |
[32] | Tuohy K M, Conterno L, Gasperotti M, et al.Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber[J]. Journal of Agricultural and Food Chemistry, 2012, 60(36): 8776-8782. |
[33] | Okubo T, Ishihara N, Oura A, et al.In vivo effects of tea polyphenol intake on human intestinal microflora and metabolism[J]. Bioscience Biotechnology & Biochemistry, 1992, 56(4): 588-591. |
[34] | Lee H C, Jenner A M, Low C S, et al.Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota[J]. Research in Microbiology, 2006, 157(9): 876-884. |
[35] | Parkar S G, Stevenson D E, Skinner M A.The potential influence of fruit polyphenols on colonic microflora and human gut health[J]. International Journal of Food Microbiology, 2008, 124(3): 295-298. |
[36] | Yeoh B S, Aguilera O R, Singh V, et al.Epigallocatechin-3-gallate inhibition of myeloperoxidase and its counter-regulation by dietary iron and lipocalin 2 in murine model of gut inflammation[J]. The American Journal of Pathology, 2016, 186(4): 912-926. |
[37] | Zhang X, Chen Y, Zhu J, et al.Metagenomics analysis of gut microbiota in a high fat diet-induced obesity mouse model fed with (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3″Me)[J].Molecular Nutrition & Food Research, 2018, 62(13): 268-277. |
[38] | Cheng M, Zhang X, Miao Y, et al.The modulatory effect of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3''Me) on intestinal microbiota of high fat diet-induced obesity mice model[J]. Food Research International, 2017, 92: 9-16. |
[39] | Tzounis X, Vulevic J, Kuhnle G G, et al.Flavanol monomer-induced changes to the human faecal microflora[J]. British Journal of Nutrition, 2008, 99(4): 782-792. |
[40] | Kemperman R A, Gross G, Mondot S, et al.Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome[J]. Food Research International, 2013, 53(2): 659-669. |
[41] | Singh D P, Singh J, Boparai R K, et al.Isomalto-oligosaccharides, a prebiotic, functionally augment green tea effects against high fat diet-induced metabolic alterations via preventing gut dysbacteriosis in mice[J]. Pharmacological Research, 2017, 123: 103-113. |
[42] | Foster M T, Gentile C L, Cox-york K, et al. Fuzhuan tea consumption imparts hepatoprotective effects and alters intestinal microbiota in high saturated fat diet-fed rats[J]. Molecular Nutrition & Food Research, 2016, 60(5): 1213-1220. |
[43] | Chen G, Xie M, Dai Z, et al.Kudingcha and Fuzhuan brick tea prevent obesity and modulate gut microbiota in high-fat diet fed mice[J]. Molecular Nutrition & Food Research, 2018, 62(6): 1700485. DOI: 10.1002/mnfr.201700485. |
[44] | Gao X, Xie Q, Kong P, et al.Polyphenol- and caffeine-rich postfermented Pu-erh tea improves diet-induced metabolic syndrome by remodeling intestinal homeostasis in mice[J]. Infection And Immunity, 2018, 86(1): e00601. DOI: 10.1128/IAI.00601-17. |
[45] | Sheng L, Jean P K, Liu H X, et al.Obesity treatment by epigallocatechin-3-gallate-regulated bile acid signaling and its enriched Akkermansia muciniphila[J]. The Faseb Journal, 2018, 32(12): 6371-6384. |
[46] | Most J, Penders J, Lucchesi M, et al.Gut microbiota composition in relation to the metabolic response to 12-week combined polyphenol supplementation in overweight men and women[J]. European Journal of Clinical Nutrition, 2017, 71(9): 1040-1045. |
[47] | Zhang X, Zhu X, Sun Y, et al.Fermentation in vitro of EGCG, GCG and EGCG3"Me isolated from Oolong tea by human intestinal microbiota[J]. Food Research International, 2013, 54(2): 1589-1595. |
[48] | Jean-pierre F, Ling-chun K, Julien T, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers[J]. Diabetes, 2010, 59(12): 3049-3057. |
[49] | Graessler J, Qin Y, Zhong H, et al.Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters[J]. The Pharmacogenomics Journal, 2013, 13(6): 514-522. |
[50] | Munukka E, Rintala A, Toivonen R, et al.Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice[J]. The ISME Journal, 2017, 11(7): 1667-1679. |
[51] | Hippe B, Remely M, Aumueller E, et al.Faecalibacterium prausnitzii phylotypes in type two diabetic, obese, and lean control subjects[J]. Beneficial Microbes, 2016, 7(4): 511-517. |
[52] | Everard A, Belzer C, Geurts L, et al.Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(22): 9066-9071. |
[53] | Furet J P, Kong L C, Tap J, et al.Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers[J]. Diabetes, 2010, 59(12): 3049-3057. |
[54] | Reunanen J, Kainulainen V, Huuskonen L, et al.Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer[J]. Applied and Environmental Microbiology, 2015, 81(11): 3655-3662. |
[55] | Vodnar D C, Socaciu C.Green tea increases the survival yield of Bifidobacteria in simulated gastrointestinal environment and during refrigerated conditions[J]. Chemistry Central Journal, 2012, 6: 61. DOI: 10.1186/1752-153X-6-61. |
[56] | Westerterp-plantenga M S, Lejeune M P G M, Kovacs E M R. Body weight loss and weight maintenance in relation to habitual caffeine intake and green tea supplementation[J]. Obesity research, 2005, 13(7): 1195-1204. |
[1] | ZHOU Shaofeng, QIAN Yunfei, ZHAO Zhen, CHEN Xuan, LI Xinghui. Effect of the Tea with Different Degrees of Fermentation on the Formation of Tea Scum [J]. Journal of Tea Science, 2022, 42(1): 76-86. |
[2] | WU Xin, SONG Feihu, PEI Yongsheng, ZHU Guanyu, JIANG Lebing, NING Wenkai, LI Zhenfeng, LIU Benying. Study on the Tea Quality Changes and Predictions during the Microwave Fixation Process by Machine Vision [J]. Journal of Tea Science, 2021, 41(6): 854-864. |
[3] | WANG Shenglin, YANG Chongshan, LIU Zhongyuan, LIU Shanjian, DONG Chunwang. Rapid Detection Method of Tea Polyphenol Content in Black Tea Fermentation Based on Electrical Properties [J]. Journal of Tea Science, 2021, 41(2): 251-260. |
[4] | LU Li, CHENG Xi, ZHANG Bo, SHEN Xiaoxia, LIU Yan, XIONG Li, YUAN Xiao, LI Yuanhua, LI Xinghui. Establishment of Predictive Model for Quantitative Analysis of Tea Polyphenols and Caffeine of Souchong by Near Infrared Spectroscopy [J]. Journal of Tea Science, 2020, 40(5): 689-695. |
[5] | YAO Min, LI Daxiang, XIE Zhongwen. Recent Advance on Anti-cardiovascular Inflammation of Major Characteristic Compounds in Tea [J]. Journal of Tea Science, 2020, 40(1): 1-14. |
[6] | ZHANG Shuping, WANG Yuefei, XU Ping. Prevention of Tea Polyphenols on Atherosclerosis and Relative Mechanisms [J]. Journal of Tea Science, 2019, 39(3): 231-246. |
[7] | ZHU Lin, WU Long, CHEN Xiaoqiang, CHEN Xueling, WU Zhengqi, SHI Yong. Interaction between Tea Polyphenols and Polysaccharides: Progress in Research on Mechanism and Function [J]. Journal of Tea Science, 2019, 39(2): 203-210. |
[8] | WU Genliang, HOU Aixiang, LI Ke, LI Zongjun. Effects of Polyphenols of Old Fu Brick Tea on the Elderly Intestinal Flora [J]. Journal of Tea Science, 2018, 38(3): 319-330. |
[9] | SHI Chunlin, LI Xiaohuan, HUANG Xiangxiang. Effects of Green Tea Polyphenols on Oxidative Stress Induced by Passive Smoking in Mice Lung [J]. Journal of Tea Science, 2018, 38(2): 212-220. |
[10] | LEI Liping, ZHU Yuehua, ZHANG Jian, YANG Wenge, LI Puyou, LIU Yanjie, QIAN Yunxia. Effects of Tea Polyphenols on Quality and Microorganisms of Pseudosciaena crocea during Iced Storage [J]. Journal of Tea Science, 2017, 37(5): 523-531. |
[11] | WEI Ran, XU Ping, YING Le, WANG Yuefei. Progress in the Prevention of Tea Polyphenols on Alzheimer's Disease and Their Mechanisms [J]. Journal of Tea Science, 2016, 36(1): 1-10. |
[12] | LIU Xiaoxiang, SUN Aihua, DU Peng, CHEN Wenhu, ZHU Junli. Cross-resistance Induced by Tea Polyphenols in Pseudomonas aeruginosa [J]. Journal of Tea Science, 2015, 35(6): 534-542. |
[13] | LUO Huimin, NING Min, XU Yingbo, WANG Chenghui, DU Xianfeng. Adsorption Properties of Porous Starch on Tea Polyphenols and Antioxidative Capacity of the Complex [J]. Journal of Tea Science, 2015, 35(5): 473-480. |
[14] | GAO Yuanyuan, MAO Limin, XU Ping, WANG Yuefei. Advances in Molecular Mechanisms of Tea Polyphenols in Preventing Type 2 Diabetes Mellitus [J]. Journal of Tea Science, 2015, 35(3): 239-247. |
[15] | XIA Jiajie, XUE Meng, JIN Meng, WU Jueli, LIU Handeng. Preliminary Reserch of Tea Polyphenols on Insulin Resistance [J]. Journal of Tea Science, 2014, 34(2): 144-148. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|