Journal of Tea Science ›› 2019, Vol. 39 ›› Issue (6): 681-691.doi: 10.13305/j.cnki.jts.2019.06.007
Previous Articles Next Articles
CHEN Linbo1,2, XIA Lifei1, LIU Yue1, SUN Yunnan1, JIANG Huibing1, TIAN Yiping1, CHEN Liang2,*
Received:
2019-03-04
Revised:
2019-05-25
Online:
2019-12-15
Published:
2019-12-24
CLC Number:
CHEN Linbo, XIA Lifei, LIU Yue, SUN Yunnan, JIANG Huibing, TIAN Yiping, CHEN Liang. Screening of miRNA Related to Anthocyanin Synthesis in Tea Cultivar ‘Zijuan’ Based on High Throughput Sequencing[J]. Journal of Tea Science, 2019, 39(6): 681-691.
[1] | Sun F, Guo G, Du J, et al.Whole-genome discovery of miRNAs and their targets in wheat (Triticum aestivum L.)[J]. BMC Plant Biology, 2014, 14(1): 142. DOI: 10.1186/1471-2229-14-142. |
[2] | Baulcombe D.RNA silencing in plants[J]. Nature, 2004, 431: 356-363. |
[3] | Gou J Y, Felippes F F, Liu C J, et al.Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-Targeted SPL transcription factor[J]. The Plant Cell, 2011, 23(4): 1512-1522. |
[4] | Ang G, Jun Y, Gu Y, et al.Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis[J]. The Plant Cell, 2012, 24(2): 415-427. |
[5] | Hsteh L C, LIN C I, Shih C C, et al.Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing[J]. Plant Physiology, 2009, 151(4): 2120-2132. |
[6] | Wang L, Zeng H Q, Song J, et al.miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis[J]. Plant Science, 2015, 238: 273-285. |
[7] | Jia X Y, Shen J, Liu H, et al.Small tandem target mimic-mediated blockage of microRNA858 induces anthocyanin accumulation in tomato[J]. Planta, 2015, 242(1): 283-293. |
[8] | Jiang X L, Huang K Y, Zheng G S, et al.CsMYB5a and CsMYB5e from Camellia sinensis differentially regulate anthocyanin and proanthocyanidin biosynthesis[J]. Plant Science, 2018, 270: 209-220. |
[9] | Cui X, Wang Y X, Liu Z W, et al.Transcriptome-wide identification and expression profile analysis of the bHLH family genes in Camellia sinensis[J].Functional & Integrative Genomics, 2018, 18(5): 489-503. |
[10] | Punyasiri PAN, Abeysinghe ISB, Kumar V, et al.Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways[J]. Arch. Biochem. Biophys, 2004. 431(1): 22-30. |
[11] | Singh K, Rani A, Kuma S, et al.An early gene of flavonoid pathway, flavanone 3-hydroxylase, exhibits a positive relationship with the concentration of catechins in tea (Camellia sinensis)[J]. Tree Physiol, 2008, 28(9): 1349-1356. |
[12] | Lv H P, Dai W D, Tan J F, et al.Identification of the anthocyanins from the purple leaf coloured tea cultivar Zijuan (Camellia sinensis var. assamica) and characterization of their antioxidant activities[J]. Journal of Functional Foods, 2015, 17: 449-458. |
[13] | Shen J Z, Zou Z W, Zhang X Z, et al.Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant(Camellia sinensis L.) cultivars[J]. Horticulture Research, 2018, 5(1): 7. DOI: 10.1038/s41438-017-0010-1. |
[14] | 费旭元, 林智, 梁名志, 等. 响应面法优化“紫娟”茶中花青素提取工艺的研究[J]. 茶叶科学, 2012, 32(3): 197-202. |
[15] | 吕海鹏, 梁名志, 张悦, 等. 特异茶树品种“紫娟”不同茶产品主要化学成分及其抗氧化活性分析[J]. 食品科学, 2016, 37(12): 122-127. |
[16] | Wen M, Shen Y, Shi S H, et al.miREvo: An Integrative microRNA evolutionary analysis platform for next-generation sequencing experiments[J]. BMC Bioinformatics, 2012, 13(1): 140. DOI: 10.1186/1471-2105-13-140. |
[17] | Friedlander M R, Mackowiak S D, Li N, et al.miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades[J]. Nucleic Acids Research, 2012, 40(1): 37-52. |
[18] | Wu H J, Ma Y K, Chen T, et al.PsRobot: a web-based plant small RNA meta-analysis toolbox[J]. Nucleic Acids Research, 2012, 40(W1): W22-W28. DOI: 10.1093/nar/gks554. |
[19] | 蒋会兵, 夏丽飞, 田易萍, 等. 基于转录组测序的紫芽茶树花青素合成相关基因分析[J]. 植物遗传资源学报, 2018, 19(5): 967-978. |
[20] | Wang L, Feng Z, Wang X, et al.DEGseq: an R package for identifying deferentially expressed genes from RNA-seq data[J]. Bioinformatics, 2010, 26(1): 136-138. |
[21] | 谢小芳, 添先凤, 江昌俊, 等. 茶树低温胁迫下microRNA实时定量PCR内参基因的筛选[J]. 茶叶科学, 2015, 35(6): 596-604. |
[22] | Zhang Y, Zhu X J, Chen X, et al.Identification and characterization of cold-responsive microRNAs in tea plant (Camelliasinensis) and their targets using high-throughput sequencing and degradome analysis[J]. BMC Plant Biology, 2014, 14: 271. DOI:10.1186/s12870-014-0271-x. |
[23] | Chen J L, Zheng Y, Qin L, et al.Identification of miRNAs and their targets through high-through put sequencing and degradome analysis in male and female Asparagus officinalis[J]. BMC Plant Biology, 2016, 16(1): 80. DOI: 10.1186/s12870-016-0770-z. |
[24] | Mecchia M A, Debernardi J M, Rodriguez R E, et al.MicroRNA miR396 and RDR6 synergistically regulate leaf development[J]. Mechanisms of Development, 2013, 130(1): 2-13. |
[25] | Zhang W, Xie Y, Xu L, et al.Identification of microRNAs and their target genes explores miRNA-mediated regulatory network of cytoplasmic male sterility occurrence during anther development in radish (Raphanus sativus L.)[J]. Frontiers in Plant Science, 2016, 7: 1054. DOI: 10.3389/fpls.2016.01054. |
[26] | Yang X, Zhao Y, Xie D, et al.Identification and functional analysis of microRNAs involved in the anther development in cotton genic male sterile line Yu98-8A[J]. International Journal of Molecular Sciences, 2016, 17(10): 1677. DOI: 10.3390/ijms17101677. |
[27] | Liu J, Yuan Y, Wang Y L, et al.Regulation of fatty acid and flavonoid biosynthesis by miRNAs in Lonicera japonica[J]. Royal Society of Chemistry, 2017, 7: 35426-35437. |
[28] | Sun Y, Qiu Y, Duan M, et al.Identification of anthocyanin biosynthesis related microRNAs in a distinctive Chinese radish (Raphanus sativus L.) by high-throughput sequencing[J]. Molecular Genetics & Genomics, 2017, 292(1): 215-229. |
[29] | Shen E M, Singh S K, Ghosh J S, et al.The miRNAome of Catharanthus roseus: identification, expression analysis, and potential roles of microRNAs in regulation of terpenoid indole alkaloid biosynthesis[J]. Scientific Reports, 2017, 7: 43027. DOI: 10.1038/srep43027. |
[30] | Liu N, Tu L, Wang L, et al.MicroRNA 157-targeted SPL genes regulate floral organ size and ovule production in cotton[J]. BMC Plant Biology, 2017, 17: 7. DOI: 10.1186/s12870-016-0969-z. |
[31] | Yang F X, Cai J, Yang Y, et al.Overexpression of microRNA828 reduces anthocyanin accumulation in Arabidopsis[J]. Plant Cell Tiss Organ Cult, 2013, 115(2): 159-167. |
[32] | Baksa I, Nagy T, Barta E, et al.Identification of Nicotiana benthamiana microRNAs and their targets using high through put sequencing and degradome analysis[J]. BMC Genomics, 2015, 16(1): 1025. DOI: 10.1186/s12864-015-2209-6. |
[33] | Wang L, Du H Y, Ta-na W Y. Genome-wide identification of MicroRNAs and their targets in the leaves and fruits of Eucommia ulmoides using high-through put sequencing[J]. Frontiers in Plant Science, 2016, 7: 1632. DOI: 10.3389/fpls.2016.01632. |
[1] | WANG Liubin, HUANG Liyun, TENG Cuiqin, WU Liyun, CHENG Hao, YU Cuiping, WANG Liyuan. Genetic and Phylogenetic Analysis for Germplasm Resources of Camellia sinensis from Wuzhou City [J]. Journal of Tea Science, 2022, 42(5): 601-609. |
[2] | ZHOU Hanchen, YANG Jihong, XU Yujie, WU Qiong, LEI Pandeng. Phylogenetic Analysis of NUDX1 Gene Involved in Geraniol Biosynthesis [J]. Journal of Tea Science, 2022, 42(5): 638-648. |
[3] | XING Anqi, WU Zichen, XU Xiaohan, SUN Yi, WANG Genmei, WANG Yuhua. Research Advances of Fluoride Accumulation Mechanisms in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 301-315. |
[4] | WANG Tao, WANG Yiqing, QI Siyu, ZHOU Zhe, CHEN Zhidan, SUN Weijiang. Identification and Transcriptional Regulation of CLH Gene Family and Expression Analysis in Albino Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 331-346. |
[5] | LIU Fuhao, FAN Yangen, WANG Yu, MENG Fanyue, ZHANG Lixia. Screening and Identification of Chaperone CsHIPP26.1 Chelating Ions in Tea Cultivar ‘Huangjinya’ [J]. Journal of Tea Science, 2022, 42(2): 179-186. |
[6] | WANG Pengjie, YANG Jiangfan, ZHANG Xingtan, YE Naixing. Research Advance of Tea Plant Genome and Sequencing Technologies [J]. Journal of Tea Science, 2021, 41(6): 743-752. |
[7] | ZHOU Hanchen, LEI Pandeng. The Functional Identification of Two Alternative Splicing Transcripts of CsNES [J]. Journal of Tea Science, 2021, 41(6): 753-760. |
[8] | YAN Minghui, LIU Ke, WANG Man, LYU Ying, ZHANG Qian. Complete Chloroplast Genome of Camellia sinensis cv. Xinyang 10 and Its Phylogenetic Evolution [J]. Journal of Tea Science, 2021, 41(6): 777-788. |
[9] | LIN Xinying, WANG Pengjie, CHEN Xuejin, GUO Yongchun, GU Mengya, ZHENG Yucheng, YE Naixing. Identification of LOX Gene Family in Camellia sinensis and Expression Analysis in the Process of White Tea Withering [J]. Journal of Tea Science, 2021, 41(4): 482-496. |
[10] | WANG Yanding, WANG Huan, LI Nana, WANG Lu, HAO Xinyuan, WANG Yuchun, DING Changqing, YANG Yajun, WANG Xinchao, QIAN Wenjun. Identification and Expression Analysis of Glucose-6-hosphate Dehydrogenase Gene (CsG6PDHs) in Camellia sinensis [J]. Journal of Tea Science, 2021, 41(4): 497-510. |
[11] | CHEN Siwen, KANG Rui, GUO Zhiyuan, ZHOU Qiongqiong, FENG Jiancan. Cloning and Expression Analysis of CsCML16 in Tea Plants (Camellia sinensis) under Low Temperature Stress [J]. Journal of Tea Science, 2021, 41(3): 315-326. |
[12] | ZHAO Yiqing, LIU Zhengjun, ZHANG Tianxin, ZHAO Yanting, XIAO Bin, GAO Yuefang. Cloning of CsCHLI Gene and Its Expression Analysis in Different Albino Tea Cultivars (Camellia sinensis) [J]. Journal of Tea Science, 2021, 41(3): 327-336. |
[13] | GUO Lingling, ZHANG Fen, CHENG Hao, WEI Kang, RUAN Li, WU Liyun, WANG Liyuan. Molecular Cloning and Expression Analysis of CsAAPs Gene Subfamily in Camellia Sinensis [J]. Journal of Tea Science, 2020, 40(4): 454-464. |
[14] | WANG Minghan, DING Ding, ZHANG Chenyu, GAO Xizhi, CHEN Jianjiao, TANG Han, SHEN Chengwen. Effects of Drought Stress on Growth and Chlorophyll Fluorescence Characteristics of Tea Seedlings [J]. Journal of Tea Science, 2020, 40(4): 478-491. |
[15] | GUO Yongchun, CHEN Jinfa, ZHAO Feng, WANG Shuyan, WANG Pengjie, ZHOU Peng, OUYANG Liqun, JIN Shan, YE Naixing. Study on the Distribution of Glyphosate and Its Metabolite Aminomethylphosphonic Acid in Camellia Sinensis [J]. Journal of Tea Science, 2020, 40(4): 510-518. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|