Journal of Tea Science ›› 2019, Vol. 39 ›› Issue (6): 731-741.doi: 10.13305/j.cnki.jts.2019.06.012
Previous Articles Next Articles
NIU Siyun, NI Kang, ZHAO Chenguang, MA Lifeng*, RUAN Jianyun
Received:
2019-05-07
Revised:
2019-09-07
Online:
2019-12-15
Published:
2019-12-24
CLC Number:
NIU Siyun, NI Kang, ZHAO Chenguang, MA Lifeng, RUAN Jianyun. Characteristics of Soil Nitrification Potential in Different Tea Gardens of China[J]. Journal of Tea Science, 2019, 39(6): 731-741.
[1] | 朱仲海. 世界茶贸易趋于平缓[J]. 中国投资, 2018(9): 40-43. |
[2] | 韩文炎, 李强. 茶园施肥现状与无公害茶园高效施肥技术[J]. 中国茶叶, 2002(6): 29-31. |
[3] | Shen J, Yong L I, Liu X, et al.Atmospheric dry and wet nitrogen deposition on three contrasting land use types of an agricultural catchment in subtropical central China[J]. Atmospheric Environment, 2013, 67(2): 415-424. |
[4] | Ye C, Cheng X, Zhang K, et al.Hydrologic pulsing affects denitrification rates and denitrifier communities in a revegetated riparian ecotone[J]. Soil Biology & Biochemistry, 2017, 115: 137-147. |
[5] | 杨亚军. 中国茶树栽培学[M]. 上海: 上海科学技术出版社, 2005. |
[6] | Wde B, Kowalchuk G A.Nitrification in acid soils: micro-organisms and mechanisms[J]. Soil Biology & Biochemistry, 2001, 33(7): 853-866. |
[7] | 范晓晖, 朱兆良. 旱地土壤中的硝化—反硝化作用[J]. 土壤通报, 2002, 33(5): 385-391. |
[8] | 王帘里, 孙波. 培养温度和土壤类型对土壤硝化特性的影响[J]. 土壤学报, 2011, 48(6): 1173-1179. |
[9] | Laverman A M.Temporal and spatial variation of nitrogen transformations in a coniferous forest soil[J]. Soil Biology & Biochemistry, 2000, 32(11): 1661-1670. |
[10] | 王峰, 陈玉真, 尤志明, 等. 不同施氮量对两种茶园土壤硝化作用和pH值的影响[J]. 茶叶科学, 2015, 35(1): 82-90. |
[11] | Chu H Y, Fuji T, Morimoto S, et al.Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil[J]. Applied and Environmental Microbiology, 2007, 73(2): 485-491. |
[12] | Ai C, Liang G Q, Sun J W, et al.Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia-oxidizers in a calcareous fluvo-aquic soil[J]. Soil Biology & Biochemistry, 2013, 57(3): 30-42. |
[13] | Robertson G P, Fisk J W, Paul E A.Seasonal changes in nitrification potential associated with application of N fertilizer and compost in maize systems of southwest Michigan[J]. Agriculture, Ecosystems & Environment, 2003, 97: 285-293. |
[14] | Xue D, Gao Y M, Yao H Y, et al.Nitrification potentials of Chinese tea orchard soils and their adjacent wasteland and forest soils[J]. Journal of Environmental Sciences, 2009, 21(9): 1225-1229. |
[15] | Yao H Y, Gao Y M, Nicol Graeme W, et al.Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils[J]. Applied and Environmental Microbiology, 2011, 77(13): 4618-4625. |
[16] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
[17] | Pester M, Rattei T, Flechl S, et al.AmoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions[J]. Environmental Microbiology, 2012, 14(2): 525-539. |
[18] | Hart S C, Stark J M, Davidson E A, et al.Nitrogen mineralization, immobilization, and nitrification[J]. Methods of soil analysis: part 2—microbiological and biochemical properties, 1994(methodsofsoilan2): 985-1018. |
[19] | Rotthauwe J H, Witzel K P, Liesack W.The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Applied & Environmental Microbiology, 1997, 63(12): 4704-4712. |
[20] | Schaffer A.Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements[J]. Nucleic Acids Research, 2001, 29(14): 2994-3005. |
[21] | 刘国旗. 多重共线性的产生原因及其诊断处理[J]. 合肥工业大学学报(自然科学版), 2001(4): 607-610. |
[22] | 王惠文, 朱韵华. PLS回归在消除多重共线性中的作用[J]. 数理统计与管理, 1996(6): 48-52. |
[23] | 罗批, 郭继昌, 李锵, 等. 基于偏最小二乘回归建模的探讨[J]. 天津大学学报, 2002(6): 783-786. |
[24] | 张政, 冯国双. 变量投影重要性分析在自变量筛选中的应用[J]. 现代预防医学, 2012, 39(22): 5813-5815. |
[25] | 朱洵, 荣起国. 基于偏最小二乘回归的基因网络数学建模[J]. 系统仿真学报, 2009, 21(4): 1148-1154. |
[26] | 王惠文, 吴载斌, 孟洁. 偏最小二乘回归的线性与非线性方法[M]. 北京: 国防工业出版社, 2006. |
[27] | Malhi S S, Mcgill W B.Nitrification in three Alberta soils: effect of temperature, moisture and substrate concentration[J]. Soil Biology & Biochemistry, 1982, 14(4): 393-399. |
[28] | 艾超. 长期施肥下根际碳氮转化与微生物多样性研究[D]. 北京: 中国农业科学院, 2015. |
[29] | 金兰淑, 郑佳, 徐慧, 等. 施氮及灌溉方式对玉米地土壤硝化潜势及微生物量碳的影响[J]. 水土保持学报, 2009, 23(4): 218-220, 226. |
[30] | Ouyang Y, Norton J M, Stark J M, et al.Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil[J]. Soil Biology & Biochemistry, 2016, 96: 4-15. |
[31] | Guo J, Ling N, Chen H, et al.Distinct drivers of activity, abundance, diversity and composition of ammonia-oxidizers: evidence from a long-term field experiment[J]. Soil Biology & Biochemistry, 2017, 115(1): 403-414. |
[32] | 段然. 施肥方式对稻田氮素转化的影响及其微生物学机制[D]. 北京: 中国农业科学院, 2018. |
[33] | 王萍萍, 段英华, 徐明岗, 等. 不同肥力潮土硝化潜势及其影响因素[J]. 土壤学报, 2019, 56(1): 124-134. |
[34] | 张苗苗, 王伯仁, 李冬初, 等. 长期施加氮肥及氧化钙调节对酸性土壤硝化作用及氨氧化微生物的影响[J]. 生态学报, 2014, 35(19): 6362-6370. |
[35] | Dorthe G, Mary K.Influence of oxic/anoxic fluctuations on ammonia oxidizers and nitrification potential in a wet tropical soil[J]. FEMS Microbiology Ecology, 2013, 85(1): 179-194. |
[36] | 张青山, 欧阳运东, 肖孔操, 等. 喀斯特峰丛洼地植被恢复对土壤硝化与反硝化潜势的影响[J]. 农业现代化研究, 2018, 39(3): 520-526. |
[37] | 郭志英, 贾仲君. 中国典型生态系统土壤硝化强度的整合分析[J]. 土壤学报, 2014, 51(6): 1317-1324. |
[38] | Claysjosser A, Lensi R, Gourbiere F.Vertical distribution of nitrification potential in an acid forest soil[J]. Soil Biology & Biochemistry, 1988, 20(3): 405-406. |
[39] | 路璐, 何燕. 不同林分土壤中氨氧化微生物的群落结构和硝化潜势差异及其驱动因子[J]. 南方农业学报, 2018, 49(11): 2169-2176. |
[40] | Dancer W S, Peterson L A, Chesters G.Ammonification and nitrification of N influenced by soil pH and previous N treatments[J]. Soil Science Society of America Journal, 1973, 37(1): 67-69. |
[41] | 韩文炎. 茶园土壤微生物量、硝化和反硝化作用研究[D]. 杭州: 浙江大学, 2012. |
[42] | 贺纪正, 沈菊培, 张丽梅. 土壤硝化作用的新机理—氨氧化古菌在酸性土壤氨氧化中的主导作用[J]. 科学观察, 2012, 7(6): 58-60. |
[43] | He J Z, Hu H W, Zhang L M.Current insights into the autotrophic thaumarchaeal ammonia oxidation in acidic soils[J]. Soil Biology & Biochemistry, 2012, 55(1): 146-154. |
[44] | Verhamme D T, Prosser J I, Nicol G W.Ammonia concentration determines differential growth of ammonia-oxidizing archaea and bacteria in soil microcosms[J]. The ISME Journal, 2011, 5(6): 1067-1071. |
[45] | Ying J Y, Zhang L M, He J Z.Putative ammonia-oxidizing bacteria and archaea in an acid red soil with different land utilization patterns[J]. Environmental Microbiology Reports, 2010, 2(2): 304-312. |
[46] | Yao H, Gao Y, Nicol G W, et al.Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils[J]. Applied and Environmental Microbiology, 2011, 77(13): 4618-4625. |
[47] | Shen W, Lin X, Gao N, et al.Land use intensification affects soil microbial populations, functional diversity and related suppressiveness of cucumber Fusarium wilt in China’s Yangtze River Delta[J]. Plant & Soil, 2008, 306(1/2): 117-127. |
[48] | Rui Tao, Steven A.Wakelin, Liang Y C, et al. Response of ammonia-oxidizing archaea and bacteria in calcareous soil to mineral and organic fertilizer application and their relative contribution to nitrification[J]. Soil Biology & Biochemistry, 2017, 114(1): 20-23. |
[49] | Di H J, Cameron K C, Hen J P, et al.Nitrification driven by bacteria and not archaea in nitrogen-rich grassland soils[J]. Nature Geoscience, 2009(9): 621-624. |
[50] | Ingalls A E.Quantifying archaeal community autotrophy in the mesopelagic ocean using natural radiocarbon[J]. Proceedings of the National Academy of Sciences, 2006, 103(17): 6442-6447. |
[51] | 刘强. 有机碳对硝化作用及其菌群结构的影响[D]. 成都: 四川大学, 2007. |
[52] | 刘强, 李大平, 胡杰, 等. 不同有机碳与无机氨氮比(C/N)下自养硝化生物膜上微生物菌群的变化[J]. 四川大学学报(自然科学版), 2008, 45(3): 663-668. |
[53] | 程谊, 张金波, 蔡祖聪. 土壤中无机氮的微生物同化和非生物固定作用研究进展[J]. 土壤学报, 2012, 49(5): 1030-1036. |
[54] | Booth M S, Stark J M, Rastetter E.Controls on nitrogen cycling in terrestrial ecosystems: A synthetic analysis of literature data[J]. Ecological Monographs, 2005, 75(2): 139-157. |
[55] | Burger M, Jackson L E.Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems[J]. Soil Biology & Biochemistry, 2003, 35(1): 29-36. |
[56] | Vitousek P M, Matson P A.Mechanisms of nitrogen retention in forest ecosystems: a field experiment[J]. Science, 1984, 255(1): 51-52. |
[57] | Dail D B, Davidson E A, Chorover J.Rapid abiotic transformation of nitrate in an acid forest soil[J]. Biogeochemistry, 2001, 54(1): 131-146. |
[58] | Perakis S S, Hedin L O.Fluxes and fates of nitrogen in soil of an unpolluted old-growth temperate forest, Southern Chile[J]. Ecology, 2001, 82(1): 2245-2260. |
[59] | Davidson E A, Chorover J, Dail D B.A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis[J]. Global Change Biology, 2003, 9(1): 228-236. |
[60] | Zak D R, Groffman P M, Pregitzer K S, et al.The Vernal Dam: plant-microbe competition for nitrogen in northern hardwood forests[J]. Ecology, 1990, 71(1): 651-656. |
[61] | Davidson E A, Stark J M, Firestone M K.Microbial production and consumption of nitrate in an annual grassland[J]. Ecology, 1990, 71(1): 1968-1975. |
[62] | Corre M D, Dechert G, Veldkamp E.Soil nitrogen cycling following montane forest conversion in central Sulawesi, Indonesia[J]. Soil Science Society of America Journal, 2006, 70(2): 359-366. |
[1] | YANG Guangrong, WANG Xiuqing, XIE Jin, LÜ Caiyou, LI Yongmei. Analysis of the Relationship between Soil Nutrients and Tea Main Quality Components of Ancient Tea Arboretum and Modern Tea Garden in Yunnan Province [J]. Journal of Tea Science, 2015, 35(6): 574-582. |
[2] | PAN Ming-an, ZHANG Xi-zhou, WANG Yong-dong, LI Ting-xuan. Variability of Soil Potassium in Low Mountain and Hilly Region at Different Scales and Its Mapping [J]. Journal of Tea Science, 2010, 30(3): 177-183. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|