Journal of Tea Science ›› 2020, Vol. 40 ›› Issue (4): 454-464.doi: 10.13305/j.cnki.jts.20200612.002
• Research Paper • Previous Articles Next Articles
GUO Lingling, ZHANG Fen, CHENG Hao, WEI Kang, RUAN Li, WU Liyun, WANG Liyuan*
Received:
2019-09-15
Revised:
2019-12-12
Online:
2020-08-15
Published:
2020-08-18
CLC Number:
GUO Lingling, ZHANG Fen, CHENG Hao, WEI Kang, RUAN Li, WU Liyun, WANG Liyuan. Molecular Cloning and Expression Analysis of CsAAPs Gene Subfamily in Camellia Sinensis[J]. Journal of Tea Science, 2020, 40(4): 454-464.
[1] | Frink C R, Waggoner P E, Ausubel J H.Nitrogen fertilizer: retrospect and prospect[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1175-1180. |
[2] | 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003.Wan X C.Tea biochemistry [M]. 3rd ed. Beijing: China Agriculture Press, 2003. |
[3] | Araus V, Vidal E A, Puelma T, et al.Members of BTB gene family of scaffold proteins suppress nitrate uptake and nitrogen use efficiency[J]. Plant Physiology, 2016, 171(2): 1523-1532. |
[4] | Chen J G, Fan X R, Qian K Y, et al.pOsNAR2.1:OsNAR2.1 expression enhances nitrogen uptake efficiency and grain yield in transgenic rice plants[J]. Plant Biotechnology Journal, 2017(15): 1273-1283. |
[5] | Yanagisawa S, Akiyama A, Kisaka H, et al.Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions[J]. Proceedings of the National Academy of Sciences, 2004, 101(20): 7833-7838. |
[6] | Shrawat A K, Carroll R T, Depauw M, et al.Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase[J]. Plant Biotechnology Journal, 2008, 6(7): 722-732. |
[7] | Tegeder M.Transporters for amino acids in plant cells: some functions and many unknowns[J]. Current Opinion in Plant Biology, 2012, 15(3): 315-321. |
[8] | Su Y H, Frommer W B, Ludewig U.Molecular and functional characterization of a family of amino acid transporters from Arabidopsis[J]. Plant Physiology, 2004, 136(2): 3104-3113. |
[9] | Réjane P, Guillaume P.Regulation of amino acid metabolic enzymes and transporters in plants[J]. Journal of Experimental Botany, 2014, 65(19): 5535-5556. |
[10] | Fischer W N, André B, Rentsch D, et al.Amino acid transport in plants[J]. Trends in Plant Science, 1998, 3(5): 188-195. |
[11] | Fischer W N, Loo D D, Koch W, et al.Low and high affinity amino acid H+-cotransporters for cellular import of neutral and charged amino acids[J]. Plant Journal for Cell Molecular Biology, 2002, 29(6): 717-731. |
[12] | Hunt E, Gattolin S, Newbury H J, et al.A mutation in amino acid permease AAP6 reduces the amino acid content of the Arabidopsis sieve elements but leaves aphid herbivores unaffected[J]. Journal of Experimental Botany, 2010, 61(1): 55-64. |
[13] | Zhang L, Tan Q, Lee R, et al.Altered xylem-phloem transfer of amino acids affects metabolism and leads to increased seed yield and oil content in Arabidopsis[J]. The Plant Cell, 2010, 22(11): 3603-3620. |
[14] | Boorer K J, Loo D D, Frommer W B, et al.Transport mechanism of the cloned potato H+/sucrose co-transporter StSUT1[J]. Journal of Biological Chemistry, 1996, 271(41): 25139-25144. |
[15] | Boorer K J, Fischer W N.Specificity and stoichiometry of the Arabidopsis H+/amino acid transporter AAP5[J]. Journal of Biological Chemistry, 1997, 272(20): 13040-13046. |
[16] | Wang T, Chen Y, Zhang M, et al.Arabidopsis amino acid permease1 contributes to salt stress-induced proline uptake from exogenous sources[J]. Frontiers in Plant Science, 2017, 8: 2182. doi: 10.3389/fpls.2017.02182. |
[17] | Tan Q, Grennan A K, Pélissier H C, et al.Characterization and expression of French bean amino acid transporter PvAAP1[J]. Plant Science, 2008, 174(3): 348-356. |
[18] | Okumoto S, Koch W M, Fischer W N, et al.Root phloem-specific expression of the plasma membrane amino acid proton co-transporter AAP3[J]. Journal of Experimental Botany, 2004, 55(406): 2155-2168. |
[19] | Neelam A, Marvier A C, Hall J L, et al.Functional characterization and expression analysis of the amino acid permease RcAAP3 from castor bean[J]. Plant Physiology, 1999, 120(4): 1049-1056. |
[20] | Ahmad I.New insights into plant amino acid transport and its contribution to nitrogen nutrition [D]. Umeå: Swedish University of Agricultural Sciences, 2015. |
[21] | Svennerstam H, Ganeteg U, Näsholm T.Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5[J]. The New Phytologist, 2008, 180(3): 620-630. |
[22] | Marella H H, Nielsen E, Schachtman D P, et al.The amino acid permeases AAP3 and AAP6 are involved in root-knot nematode parasitism of Arabidopsis[J]. Molecular Plant-microbe Interactions, 2013, 26(1): 44-54. |
[23] | Rentsch D, Hirner B, Schmelzer E, et al.Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant[J]. The Plant Cell, 1996, 8(8): 1437-1446. |
[24] | Ueda A, Shi W, Sanmiya K, et al.Functional analysis of salt-inducible proline transporter of barley roots[J]. Plant and Cell Physiology, 2001, 42(11): 1282-1289. |
[25] | Meyer A, Eskandari S, Grallath S, et al.AtGAT1, a high affinity transporter for gamma-aminobutyric acid in Arabidopsis thaliana[J]. Journal of Biological Chemistry, 2006, 281(11): 7197-7204. |
[26] | Zhao H M, Ma H L, Yu L, et al.Genome-wide survey and expression analysis of amino acid transporter gene family in rice (Oryza sativa L.)[J]. PLos One, 2012, 7(11): e49210. doi: 10.1371/journal.pone.0049210. |
[27] | Persson J, Gardeström P, Näsholm T.Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris[J]. Journal of Experimental Botany, 2006, 57(11): 2651-2659. |
[28] | Dong C, Li F, Yang T, et al.Theanine transporters identified in tea plants (Camellia sinensis L.)[J]. The Plant Journal, 2020, 101(1): 57-70. |
[29] | Ruan J Y, Gerendas J, Hardter R, et al.Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants[J]. Annals of Botany, 2007, 99(2): 301-310. |
[30] | 张芬, 王丽鸳, 成浩, 等. 茶树亚硝酸还原酶基因CsNiR的克隆及表达分析[J]. 园艺学报, 2016, 43(7): 1348-1356.Zhang F, Wang L Y, Cheng H, et al.Molecular cloning and expression analysis of nitrite reductase gene CsNiR in tea plant[J]. Acta Horticulturae Sinica, 2016, 43(7): 1348-1356. |
[31] | Wei C, Yang H, Wang S, et al.Draft genome sequence of Camellia sinensis, var. sinensis, provides insights into the evolution of the tea genome and tea quality[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18): E4151-E4158. |
[32] | Bailey T, Elkan C.Fitting a mixture model by expectation maximization to discover motifs in biopolymers[J]. Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, 1994(2): 28-36. |
[33] | Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the <inline-graphic xlink:href="1000-369X-40-4-454/img_1.wmf"/> method[J]. Methods, 2001, 25(4): 402-408. |
[34] | Breitkreuz K E, Shelp B J, Fischer W N, et al.Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana[J]. Febs Letters, 1999, 450(3): 280-284. |
[35] | 李美美. 大豆氨基酸透性酶基因GmAAP3f功能的初步研究[D]. 天津: 南开大学, 2016.Li M M.Preliminary study on the function of soybean amino acid permease gene GmAAP3f [D]. Tianjin: Nankai University, 2016. |
[36] | Okumoto S, Schmidt R, Tegeder M, et al.High affinity amino acid transporters specifically expressed in xylem parenchyma and developing seeds of Arabidopsis[J]. Journal of Biological Chemistry, 2002, 277(47): 45338-45346. |
[37] | 王新超. 不同品种茶树氮素营养差异及其机制的研究[D]. 北京: 中国农业科学院, 2003.Wang X C.Study on the genotypic difference of nitrogen nutrient and its mechanism in tea plant [Camellia sinensis (L.) O. Kuntze] [D]. Beijing: Chinese Academy of Agricultural Sciences, 2003. |
[38] | 刘圆. 不同氮效率茶树品种氮素吸收利用相关基因表达模式探究[D]. 北京: 中国农业科学院, 2016.Liu Y.The altered expression of genes related to nitrogen absorption and utilization of tea cultivars with different nitrogen use efficiency [D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. |
[1] | WANG Liubin, HUANG Liyun, TENG Cuiqin, WU Liyun, CHENG Hao, YU Cuiping, WANG Liyuan. Genetic and Phylogenetic Analysis for Germplasm Resources of Camellia sinensis from Wuzhou City [J]. Journal of Tea Science, 2022, 42(5): 601-609. |
[2] | ZHOU Hanchen, YANG Jihong, XU Yujie, WU Qiong, LEI Pandeng. Phylogenetic Analysis of NUDX1 Gene Involved in Geraniol Biosynthesis [J]. Journal of Tea Science, 2022, 42(5): 638-648. |
[3] | XING Anqi, WU Zichen, XU Xiaohan, SUN Yi, WANG Genmei, WANG Yuhua. Research Advances of Fluoride Accumulation Mechanisms in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 301-315. |
[4] | WANG Tao, WANG Yiqing, QI Siyu, ZHOU Zhe, CHEN Zhidan, SUN Weijiang. Identification and Transcriptional Regulation of CLH Gene Family and Expression Analysis in Albino Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 331-346. |
[5] | LIU Fuhao, FAN Yangen, WANG Yu, MENG Fanyue, ZHANG Lixia. Screening and Identification of Chaperone CsHIPP26.1 Chelating Ions in Tea Cultivar ‘Huangjinya’ [J]. Journal of Tea Science, 2022, 42(2): 179-186. |
[6] | WANG Pengjie, YANG Jiangfan, ZHANG Xingtan, YE Naixing. Research Advance of Tea Plant Genome and Sequencing Technologies [J]. Journal of Tea Science, 2021, 41(6): 743-752. |
[7] | ZHOU Hanchen, LEI Pandeng. The Functional Identification of Two Alternative Splicing Transcripts of CsNES [J]. Journal of Tea Science, 2021, 41(6): 753-760. |
[8] | YAN Minghui, LIU Ke, WANG Man, LYU Ying, ZHANG Qian. Complete Chloroplast Genome of Camellia sinensis cv. Xinyang 10 and Its Phylogenetic Evolution [J]. Journal of Tea Science, 2021, 41(6): 777-788. |
[9] | LIN Xinying, WANG Pengjie, CHEN Xuejin, GUO Yongchun, GU Mengya, ZHENG Yucheng, YE Naixing. Identification of LOX Gene Family in Camellia sinensis and Expression Analysis in the Process of White Tea Withering [J]. Journal of Tea Science, 2021, 41(4): 482-496. |
[10] | WANG Yanding, WANG Huan, LI Nana, WANG Lu, HAO Xinyuan, WANG Yuchun, DING Changqing, YANG Yajun, WANG Xinchao, QIAN Wenjun. Identification and Expression Analysis of Glucose-6-hosphate Dehydrogenase Gene (CsG6PDHs) in Camellia sinensis [J]. Journal of Tea Science, 2021, 41(4): 497-510. |
[11] | CHEN Siwen, KANG Rui, GUO Zhiyuan, ZHOU Qiongqiong, FENG Jiancan. Cloning and Expression Analysis of CsCML16 in Tea Plants (Camellia sinensis) under Low Temperature Stress [J]. Journal of Tea Science, 2021, 41(3): 315-326. |
[12] | ZHAO Yiqing, LIU Zhengjun, ZHANG Tianxin, ZHAO Yanting, XIAO Bin, GAO Yuefang. Cloning of CsCHLI Gene and Its Expression Analysis in Different Albino Tea Cultivars (Camellia sinensis) [J]. Journal of Tea Science, 2021, 41(3): 327-336. |
[13] | FAN Lichao, ZOU Zhenhao, HAN Wenyan. Soil N2O Emission in Different Tea Gardens and Its Affecting Factors [J]. Journal of Tea Science, 2021, 41(2): 193-202. |
[14] | SU Jingjing, RUAN Li, WANG Liyuan, WEI Kang, WU Liyun, BAI Peixian, CHENG Hao. Early Identification of Nitrogen Absorption Efficiency in Tea Plants [J]. Journal of Tea Science, 2020, 40(5): 576-587. |
[15] | WANG Minghan, DING Ding, ZHANG Chenyu, GAO Xizhi, CHEN Jianjiao, TANG Han, SHEN Chengwen. Effects of Drought Stress on Growth and Chlorophyll Fluorescence Characteristics of Tea Seedlings [J]. Journal of Tea Science, 2020, 40(4): 478-491. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|