Journal of Tea Science ›› 2020, Vol. 40 ›› Issue (6): 715-723.doi: 10.13305/j.cnki.jts.2020.06.002
• Review • Previous Articles Next Articles
HUANG Fangfang1,2, LI Qin1,2, HUANG Jian'an1,2,3,*
Received:
2020-03-12
Revised:
2020-05-21
Online:
2020-12-15
Published:
2020-12-10
CLC Number:
HUANG Fangfang, LI Qin, HUANG Jian'an. Research Progress of Tea Rhizosphere Microorganisms[J]. Journal of Tea Science, 2020, 40(6): 715-723.
[1] Pineda A, Zheng S J, Loon J J A V, et al. Helping plants to deal with insects: the role of beneficial soil-borne microbes[J]. Trends in Plant Science, 2010, 15(9): 507-514. [2] Bever J D, Platt T G, Morton E R.Microbial population and community dynamics on plant roots and their feedbacks on plant communities[J]. Annual Review of Microbiology, 2012, 66(1): 265-283. [3] 伍丽. 不同品种茶树根际微生物的研究[D]. 杨凌: 西北农林科技大学, 2010. Wu L.The study of the rhizosphere microorganism of varieties of tea [D]. Yangling: Northwest A&F University, 2010. [4] Bending G D, Turner M K, Rayns F, et al.Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes[J]. Soil Biology & Biochemistry, 2004, 36(11): 1785-1792. [5] Chang Y J, Hussain A K, Stephen J R, et al.Impact of herbicides on the abundance and structure of indigenous β-subgroup ammonia-oxidizer communities in soil microcosms[J]. Environmental Toxicology and Chemistry, 2001, 20(11): 2462-2468. [6] Helgason T, Daniell T J, Husband R, et al.Ploughing up the wood-wide web?[J]. Nature, 1998, 394(6692): 431. doi: 10.1038/28764. [7] Bais H P, Weir T L, Perry L G, et al.The role of root exudates in rhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57(1): 233-266. [8] Liu J, Guo C, Chen Z L, et al.Mycorrhizal inoculation modulates root morphology and root phytohormone responses in trifoliate orange under drought stress[J]. Emirates Journal of Food and Agriculture, 2016, 28(4): 251-256. [9] 薛英龙, 李春越, 王苁蓉, 等. 丛枝菌根真菌促进植物摄取土壤磷的作用机制[J]. 水土保持学报, 2019, 33(6): 10-20. Xue Y L, Li C Y, Wang C R, et al.Mechanisms of phosphorous uptake from soils by arbuscular mycorrhizal fungi[J]. Journal of Soil and Water Conservation, 2019, 33(6): 10-20. [10] Abbott L K, Murphy D V.Soil biological fertility[M]. Dordrecht: Springer, 2007: 129-163. [11] Liu D, Liu H B, Li X H, et al.Multiple phytohormones and phytoalexins are involved in disease resistance to [12] Egamberdieva D.Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat[J]. Acta Physiologiae Plantarum, 2009, 31(4): 861-864. [13] Xu J, Wang W, Sun J, et al.Involvement of auxin and nitric oxide in plant Cd-stress responses[J]. Plant and Soil, 2011, 346(1/2): 107-119. [14] Santhanam R, Luu V T, Weinhold A, et al.Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping[J]. Proceedings of the National Academy of Sciences, 2015, 112(36): E5013-E5020. [15] Bulgarelli D, Schlaeppi K, Spaepen S, et al.Structure and functions of the bacterial microbiota of plants[J]. Annual Review of Plant Biology, 2013, 64(1): 807-838. [16] 刘家女, 房晓婷, 王文静. 植物修复及强化调控系统根际土壤微生物研究综述[J]. 安全与环境学报, 2015, 15(1): 222-227. Liu J N, Fang X T, Wang W J.Review on microorganisms in phytoremediation and the corresponding measures for its enhanced regulation[J]. Journal of Safety and Environment, 2015, 15(1): 222-227. [17] Nele W, Daniel V D L, Safiyh T, et al. Phytoremediation: plant-endophyte partnerships take the challenge[J]. Current Opinion in Biotechnology, 2009, 20(2): 248-254. [18] Miransari M.Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals[J]. Biotechnology Advances, 2011, 29(6): 645-653. [19] Berndt G.Biological substitutes for pesticides[J]. Trends in Biotechnology, 2002, 20(8): 338-343. [20] Parke J L, Gurian-Sherman D.Diversity of the [21] 陆雅海, 张福锁. 根际微生物研究进展[J]. 土壤, 2006, 38(2): 113-121. Lu Y H, Zhang F S.The advances in rhizosphere microbiology[J]. Soils, 2006, 38(2): 113-121. [22] Hart M.Methods of studying soil microbial diversity[J]. Journal of Microbiological Methods, 2004, 58(2): 169-188. [23] 李国娟, 柳纪省, 李宝玉, 等. 微生物分离与培养的新方法与新技术[J]. 畜牧兽医科技信息, 2009(11): 10-11. Li G J, Liu J S, Li B Y, et al.New methods and technologies for microbial isolation and cultivation[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2009(11): 10-11. [24] 刘国华, 叶正芳, 吴为中. 土壤微生物群落多样性解析法:从培养到非培养[J]. 生态学报, 2012, 32(14): 4421-4433. Liu G H, Ye Z F, Wu W Z.Culture-dependent and culture-independent approaches to studying soil microbial diversity[J]. Acta Ecologica Sinica, 2012, 32(14): 4421-4433. [25] Torsvik L, Ovreas V.Microbial diversity and function in soil: from genes to ecosystems[J]. Current Opinion in Microbiology, 2002, 5(3): 240-245. [26] Torsvik V, Sørheim R, Goksøyr J.Total bacterial diversity in soil and sediment communities: a review[J]. Journal of Industrial Microbiology, 1996, 17: 170-178. [27] 张于光, 李迪强, 肖启明. 分子生态学技术及其在环境微生物研究中的应用[J]. 微生物学杂志, 2005, 25(5): 91-94. Zhang Y G, Li D Q, Xiao Q M.Molecular ecology technology and its application in environmental microbiology study[J]. Journal of Microbiology, 2005, 25(5): 91-94. [28] 谢光新, 张荣先, 黄雪飞, 等. 不同生长年限茶树根际微生物分布的差异[J]. 湖北农业科学, 2012(15): 34-36. Xie G X, Zhang R X, Huang X F, et al.Distribution of root and rhizosphere microorganism in tea tree at different ages[J]. Hubei Agricultural Sciences, 2012(15): 34-36. [29] Pandey A, Palni L M. [30] Pandey A, Palni L M, Bisht D.Dominant fungi in the rhizosphere of established tea bushes and their interaction with the dominant bacteria under in situ conditions[J]. Microbiological Research, 2001, 156(4): 377-382. [31] 成泽艳. 茶树根际微生物区系分析及生物菌肥的初步研制[D]. 成都: 四川农业大学, 2004: 21. Chen Z Y.Study on rhizosphere microflora and biofertilizer of tea [D]. Chengdu: Sichuan Agricultural University, 2004: 21. [32] 许广, 王梦姣, 邓百万, 等. 不同植茶年限茶树根际土壤细菌多样性及群落结构研究[J]. 生物技术通报, 2020, 36(3): 124-132. Xu G, Wang M J, Deng B W, et al.Bacterial diversity and community structure of rhizosphere soil of tea plants in different years of planting[J]. Biotechnology Bulletin, 2020, 36(3): 124-132. [33] 赵兴丽, 卯婷婷, 张金峰, 等. 不同品种茶树根际土壤真菌群落多样性及结构特征[J]. 茶叶通讯, 2019, 46(3): 284-290. Zhao X L, Mao T T, Zhang J F, et al.Diversity and structural characteristics of fungi community in rhizospheres soil of different varieties of [34] 王贵卫. 茶树根际环境因子—细菌种群及功能相关性探究[D]. 杭州: 浙江理工大学, 2018. Wang G W.Correlation between microenvironments and bacterial communities and function in the rhizosphere [35] 田永辉. 不同土壤对茶树根际固氮微生物的影响[J]. 茶叶通讯, 1998(4): 21-22. Tian Y H.Effects of different soils on nitrogen-fixing microorganisms in tea rhizosphere[J]. Journal of Tea Communication, 1998(4): 21-22. [36] 卢开阳. 云南11个茶山的大叶种茶树根际土壤微生物遗传多样性研究[D]. 昆明: 云南师范大学, 2016. Lu K Y.Study on microbial genetic diversity in large leaf tea rhizosphere soil at 11mountains from Yunnan province [D]. Kunming: Yunnan Normal University, 2016. [37] 梁月荣, 刘祖生, 陆建良, 等. 茶树根际土壤抗酸铝真菌ALF-1( Liang Y R, Liu Z S, Lu J L, et al.Effect of aluminum resistant fungus ALF 1 ( [38] Cakmakci R, Donmez M F, Erturk Y, et al.Diversity and metabolic potential of culturable bacteria from the rhizosphere of Turkish tea grown in acidic soils[J]. Plant and Soil, 2010, 332(1/2): 299-318. [39] Sarkar S, Seenivasan S, Asir R P S. Biodegradation of propargite by [40] Saikia R, Sarma R K, Yadav A, et al.Genetic and functional diversity among the antagonistic potential [41] 高旭晖. 茶树根际微生物与根际效应[J]. 茶叶通讯, 2000(1): 35-38. Gao X H.Rhizosphere microorganisms and effects of tea rhizosphere[J]. Journal of Tea Communication, 2000(1): 35-38. [42] Thakur R, Sharma K C, Gulati A, et al.Stress-tolerant [43] Purkayastha G D, Mangar P, Saha A, et al.Evaluation of the biocontrol efficacy of a [44] Wu Q S, Shao Y D, Gao X B, et al.Characterization of AMF-diversity of endosphere versus rhizosphere of tea ( [45] 何斐, 李冬花, 卜凡. 不同品种茶树根际AM真菌群落结构分析[J]. 茶叶科学, 2020, 40(3): 319-327. He F, Li D H, Pu F.Analysis of [46] Singh S, Pandey A, Chaurasia B, et al.Diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of tea growing in ‘natural’ and ‘cultivated’ ecosites[J]. Biology and Fertility of Soils, 2008, 44(3): 491-500. [47] Sharma D, Kayang H.Effects of arbuscular mycorrhizal fungi (AMF) on [48] Shao Y D, Zhang D J, Hu X C, et al.Mycorrhiza-induced changes in root growth and nutrient absorption of tea plants[J]. Plant Soil Environ, 2018, 64(6): 283-289. [49] 许平辉. 丛枝菌根真菌(AMF)对水分胁迫下茶树生长及抗旱性的影响[D]. 杨凌: 西北农林科技大学, 2017. Xu P H.Effects of arbusular mycorrhizal fungi on growth and drought resistance of tea plant under water stress [D]. Yangling: Northwest A&F University, 2017. [50] 柳洁, 肖斌, 王丽霞, 等. 丛枝菌根真菌对茶树耐盐性的影响[J]. 西北农林科技大学学报(自然科学版), 2014, 42(3): 220-225. Liu J, Xiao B, Wang L X.Influence of AMF on salt tolerance of tea[J]. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(3): 220-225. [51] Hu L, Robert C A M, Cadot S, et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J]. Nature Communications, 2018, 9(1): 2738-2850. [52] Mendes R, Garbeva P, Raaijmakers J M.The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J]. Fems Microbiology Reviews, 2013, 37(5): 634-663. [53] 刘红艳, 邓欣. 我国茶树根际微生物研究现状及展望[J]. 茶叶通讯, 2003(4): 14-18. Liu H Y, Deng X.Research status and prospect of tea rhizosphere microorganisms in China[J]. Journal of Tea Communication, 2003(4): 14-18. [54] Li Y, Li Z, Arafat Y, et al.Characterizing rhizosphere microbial communities in long-term monoculture tea orchards by fatty acid profiles and substrate utilization[J]. European Journal of Soil Biology, 2017, 81: 48-54. [1] 杨扬, 刘炳君, 房江育, 等. 不同植茶年龄茶树根际与非根际土壤微生物及酶活性特征研究[J]. 中国农学通报, 2011, 27(27): 118-121. Yang Y, Liu B J, Fang J Y, et al.The Study on characteristics of microbes and enzyme activity in rhizosphere and out-rhizosphere soil of tea garden at various ages[J]. Chinese Agricultural Science Bulletin, 2011, 27(27): 118-121. [55] 黄祖法, 温琼英. 茶树根表微生物的初步调查[J]. 中国茶叶, 1982(6): 9-11. Huang Z F, Wen Q Y.Preliminary investigation of microorganisms on tea root surface[J]. China Tea, 1982(6): 9-11. [56] 田永辉. 不同树龄茶树根际固氮菌组成及多样性研究[J]. 福建茶叶, 2000(3): 19-21. Tian Y H.Composition and diversity of nitrogen-fixing bacteria in the rhizosphere of tea of different ages[J]. Tea in Fujian, 2000(3): 19-21. [57] Lin W W, Lin M H, Zhou H Y, et al.The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards[J]. Plos One, 2019, 14(5): e0217018. doi: 10.1371/journal.pone.0217018. [58] 罗毅, 苏有健, 张永利, 等. 不同施肥处理对茶树根际细菌多样性的影响[J]. 中国农学通报, 2014, 30(25): 177-183. Luo Y, Su Y J, Zhang Y L, et al.Effect of fertilizer on tea plant rhizosphere bacteria diversity[J]. Chinese Agricultural Science Bulletin, 2014, 30(25): 177-183. [59] 伍丽, 余有本, 周天山, 等. 茶树根际土壤因子对根际微生物数量的影响[J]. 西北农业学报, 2011, 20(4): 159-163. W L, Yu Y B, Zhou T S, et al. Effects of soil factors on the distributions of tea rhizosphere microorganisms[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2011, 20(4): 159-163. [60] 刘红艳, 张亚莲, 邓欣, 等. 不同栽培方式有机茶园土壤微生物群落组成、活性及脲酶活性比较[J]. 福建茶叶, 2007(4): 20-21. Liu H Y, Zhang Y L, Deng X, et al.Comparison of soil microbial community composition, activity and urease activity in organic tea gardens with different cultivation methods[J]. Tea in Fujian, 2007(4): 20-21. [61] Buée M, Boer W D, Martin F, et al.The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors[J]. Plant & Soil, 2009, 321(1/2): 189-212. [62] Bever J D, Platt T G, Morton E R.Microbial population and community dynamics on plant roots and their feedbacks on plant communities[J]. Annual Review of Microbiology, 2012, 66(1): 265-283. [63] Beckers B, Michiel O D B, Weyens N, et al. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees[J]. Microbiome, 2017, 5(1): 25. doi: 10.1186/s40168-017-0241-2. [64] Fitzpatrick C R, Copeland J, Wang P W, et al.Assembly and ecological function of the root microbiome across angiosperm plant species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): E1157-E1165. [65] Raaijmakers J M, Paulitz T C, Steinberg C, et al.The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms[J]. Plant & Soil, 2009, 321(1/2): 341-361. |
[1] | WANG Liubin, HUANG Liyun, TENG Cuiqin, WU Liyun, CHENG Hao, YU Cuiping, WANG Liyuan. Genetic and Phylogenetic Analysis for Germplasm Resources of Camellia sinensis from Wuzhou City [J]. Journal of Tea Science, 2022, 42(5): 601-609. |
[2] | CHEN Qiyu, MA Jianqiang, CHEN Jiedan, CHEN Liang. Genetic Diversity of Mature Leaves of Tea Germplasms Based on Image Features [J]. Journal of Tea Science, 2022, 42(5): 649-660. |
[3] | LI Changle, GE Yue, YAN Meilin, LI Hui, LIN Qingqing, WANG Pu, ZHAO Hua, WANG Mingle, WANG Yu, GUO Fei, NI Dejiang. Analysis of Genetic Diversity and Population Structure of 32 Tea Landraces in China [J]. Journal of Tea Science, 2021, 41(5): 619-630. |
[4] | HUANG Xiangxiang, TAN Ting, YU Lijun, WANG Kunbo, HUANG Jian'an, XU Shiyu, LIU Zhonghua. Effects of Fu Brick Tea on Inflammation and Intestinal Microflora Diversity in Mice with DSS-induced Ulcerative Colitis [J]. Journal of Tea Science, 2021, 41(5): 681-694. |
[5] | MAO Juan, JIANG Hongjian, YANG Rubing, LI Chongxing, MA Chengying, CHEN Liang, MA Jianqiang. Genetic Diversity and Population Structure of Wild and Cultivated Camellia taliensis Populations [J]. Journal of Tea Science, 2021, 41(4): 454-462. |
[6] | WANG Yixiang, HUANG Jiaqing, YE Jing, LI Yanchun, LIN Yi, LIU Cenwei. Effects of Biochar Application on Soil Properties and Fungi Community Structure in Acidified Tea Gardens [J]. Journal of Tea Science, 2021, 41(3): 419-429. |
[7] | LIU Dingding, WANG Junya, TANG Rongjin, CHEN Liang, MA Chunlei. Genome-wide Identification of PPR Gene Family and Expression Analysis of Albino Related Genes in Tea Plants [J]. Journal of Tea Science, 2021, 41(2): 159-172. |
[8] | LI Hongjian, QIN Dandan, JIANG Xiaohui, FANG Kaixing, WANG Qiushuang, PAN Chendong, LI Bo, WANG Qing, WU Hualing. Analysis and Evaluation of Purine Alkaloid Contents in Bitter Tea Germplasm Resources from Guangdong [J]. Journal of Tea Science, 2021, 41(1): 71-79. |
[9] | SU Jingjing, RUAN Li, WANG Liyuan, WEI Kang, WU Liyun, BAI Peixian, CHENG Hao. Early Identification of Nitrogen Absorption Efficiency in Tea Plants [J]. Journal of Tea Science, 2020, 40(5): 576-587. |
[10] | YAN Fei, JIANG Wenhua, QU Dong, FU Jing, ZHAO Xuan. Effects of Exogenous 5-aminolevulinic Acid on Photosynthetic and Physiological Characteristics of Tea Plants under Low Temperature Stress [J]. Journal of Tea Science, 2020, 40(5): 597-606. |
[11] | CHEN Jiajia, HU Yunfei, SHEN Shiyu, WANG Zhihua, ZHOU Zhe, TANG Qin, SUN Weijiang. Analysis of Bacterial Diversity of Stored White Peony by High-Throughput Sequencing [J]. Journal of Tea Science, 2020, 40(4): 519-527. |
[12] | LIU Zhen, CHENG Yang, YANG Peidi, ZHAO Yang, NING Jing, YANG Yang. Genetic Diversity and Structure of Chengbudong Tea Population Revealed by nSSR and cpDNA Markers [J]. Journal of Tea Science, 2020, 40(2): 250-258. |
[13] | CHEN Linmu, CHEN Jingguang, WANG Ningning, ZHANG Xianchen. The Role of Plasma Membrane H+-ATPase on Nitrogen-regulated Phosphorus Uptake in Tea Plants [J]. Journal of Tea Science, 2019, 39(6): 723-730. |
[14] | WANG Feng, SHAN Ruiyang, CHEN Yuzhen, LIN Dongliang, ZANG Chunrong, CHEN Changsong, YOU Zhiming, YU Wenquan. A Case Study of Cadmium Distribution in Soil-Tea Plant-Tea Soup System in Central Fujian Province and Relative Health Risk Assessment [J]. Journal of Tea Science, 2018, 38(5): 537-546. |
[15] | WANG Feng, WU Zhidan, CHEN Yuzhen, JIANG Fuying, ZHU Liugang, ZHANG Wenjin, WENG Boqi, YOU Zhiming. Effects of the Combined Application of Biochar and Nitrogen on Growth and Nitrogen Use Efficiency of Tea Plants [J]. Journal of Tea Science, 2018, 38(4): 331-341. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|