[1] 张颖彬, 刘栩, 鲁成银. 中国茶叶感官审评术语的形成与发展现状[J]. 茶叶科学, 2019, 39(2): 123-130. Zhang Y B, Liu X, Lu C Y.The development process and trend of Chinese tea comprehensive processing industry[J]. Journal of Tea Science, 2019, 39(2): 123-130. [2] 黄藩, 刘飞, 王云, 等. 计算机视觉技术在茶叶领域中的应用现状及展望[J]. 茶叶科学, 2019, 39(1): 81-87. Huang F, Liu F, Wang Y.Research progress and prospect on computer vision technology application in tea production[J]. Journal of Tea Science, 2019, 39(1): 81-87. [3] 傅隆生, 宋珍珍, Zhang Xin, 等. 深度学习方法在农业信息中的研究进展与应用现状[J]. 中国农业大学学报, 2020, 25(2): 105-120. Fu L S, Song Z Z, Zhang X, et al.Applications and research progress of deep learning in agriculture[J]. Journal of China Agricultural University, 2020, 25(2): 105-120. [4] 严俊, 林刚, 赖国亮, 等. 测色技术在炒青绿茶品质评价中的应用研究[J]. 食品科学, 1996(7): 21-24. Yan J, Lin G, Lai G L, et al.Study on the application of color measurement technology in evaluating the quality of roasted green tea[J]. Food Science, 1996(7): 21-24. [5] 龙立梅, 宋沙沙, 李柰, 等. 3种名优绿茶特征香气成分的比较及种类判别分析[J]. 食品科学, 2015, 36(2): 114-119. Long L M, Song S S, Li N, et al.Comparisons of characteristic aroma components and cultivar discriminant analysis of three varieties of famous green tea[J]. Food Science, 2015, 36(2): 114-119. [6] 赵杰文, 郭志明, 陈全胜. 基于HPLC和模式识别的绿茶分类[J]. 江苏大学学报(自然科学版), 2010(3): 7-11. Zhao J W, Guo Z M, Chen Q S.Identification of green teas by HPLC and pattern recognition[J]. Proceedings of the Jiangsu University (Natural Science), 2010(3): 7-11. [7] 范方媛, 徐鹏程, 李春霖, 等. 基于HPLC多元指纹图谱的龙井茶产地判别研究[J]. 中国食品学报, 2019, 19(10): 278-285. Fan F Y, Xu P C, Li C L, et al.Studies on geographical discrimination of Longjing teas based on multiple HPLC fingerprints[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(10): 278-285. [8] 门洪, 宁珂, 张艳平, 等. 基于FCM-SVM的差分脉冲伏安电子舌用于对绿茶的识别[J]. 中国农机化学报, 2013, 34(5): 201-205. Men H, Ning K, Zhang Y P, et al.Classification of green tea using differential pulse voltammetry electronic tongue based on FCM-SVM[J]. Chinese Journal of Agricultural Machinery Chemistry, 2013, 34(5): 201-205. [9] 于亚萍, 赵辉, 杨仁杰, 等. 伏安型电子舌对不同种类绿茶的辨识[J]. 食品工业, 2018, 39(11): 209-213. Yu Y P, Zhao H, Yang R J, et al.Idenfication of green tea using voltammetric electronic tongue[J]. Food Industry, 2018, 39(11): 209-213. [10] 蒋帆, 乔欣, 郑华军, 等. 基于高光谱分析技术的机炒龙井茶等级识别方法[J]. 农业工程学报, 2011, 27(7): 343-348. Jiang F, Qiao X, Zheng H J, et al.Grade discrimination of machine-fried Longjing tea based on hyperspectral technology[J]. Agricultural Engineering, 2011, 27(7): 343-348. [11] 林新, 牛智有. 基于近红外光谱茶叶种类的快速识别[J]. 华中农业大学学报, 2008(2): 166-170. Lin X, Niu Z Y.Fast discrimination of tea species based on Near Infrared Spectroscopy (NIRS)[J]. Journal of Huazhong Agricultural University, 2008(2): 166-170. [12] 巴桂. 基于卷积神经网络的图像分类算法[J]. 电脑与信息技术, 2020, 28(1): 1-3. Ba G.Image classification method Based on convolution neural network[J]. Computer and Information Technology, 2020, 28(1): 1-3. [13] 王伟凝, 王励, 赵明权, 等. 基于并行深度卷积神经网络的图像美感分类[J]. 自动化学报, 2016, 42(6): 904-914. Wang W N, Wang L, Zhao M Q, et al.Image aesthetic classification using parallel deep convolutional neural networks[J]. Journal of Automation, 2016, 42(6): 904-914. [14] 黄斌, 卢金金, 王建华, 等. 基于深度卷积神经网络的物体识别算法[J]. 计算机应用, 2016(12): 3333-3340. Huang B, Lu J J, Wang J H, et al.Object recognition algorithm based on deep convolution neural networks[J]. Computer Applications, 2016(12): 3333-3340. [15] Cai Y, Yang M, Jun L I.Multiclass classification based on a deep convolutional[J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(11): 930-939. [16] 詹曙, 梁植程, 谢栋栋. 前列腺磁共振图像分割的反卷积神经网络方法[J]. 中国图象图形学报, 2017, 22(4): 516-522. Zhan S, Liang Z C, Xie D D.Deconvolutional neural network for prostate MRI segmentation[J]. Chinese Journal of Image and Graphics, 2017, 22(4): 516-522. [17] 胡挺, 祝永新, 田犁, 等. 面向移动平台的轻量级卷积神经网络架构[J]. 计算机工程, 2019, 45(1): 17-22. Hu T, Zhu Y X, Tian L, et al.Lightweight convolutional neural network architecture for mobile platforms[J]. Computer Engineering, 2019, 45(1): 17-22. [18] 卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理, 2016, 31(1): 1-17. Lu H T, Zhang Q C.Applications of deep convolutional neural network in computer vision[J]. Data acquisition and processing, 2016, 31(1): 1-17. [19] Wu L, Liu Z, Bera T, et al.A deep learning model to recognize food contaminating beetle species based on elytra fragments[J]. Computers and Electronics in Agriculture, 2019, 166: 105002. doi: 10.1016/j.compag.2019.105002. [20] Yahya Altuntaş, Zafer Cömert, Kocamaz A F.Identification of haploid and diploid maize seeds using convolutional neural networks and a transfer learning approach[J]. Computers and Electronics in Agriculture, 2019, 163: 1-11. [21] 张鹏, 徐欣楠, 王洪伟, 等. 基于深度学习的计算机辅助肺癌诊断方法[J]. 计算机辅助设计与图形学学报, 2018, 30(1): 90-99. Zhang P, Xu X N, Wang H W, et al.Computer-aided lung cancer diagnosis approaches based on deep learning[J]. Journal of computer-aided design, 2018, 30(1): 90-99. [22] 赵树枫, 周亮, 罗双虎, 等. 基于稀疏卷积神经网络的考生识别算法[J]. 现代电子技术, 2019, 42(13): 61-64. Zhao S F, Zhou L, Luo S H, et al.Examinee recognition algorithm based on sparse convolutional neural network[J]. Modern Electronics Technology, 2019, 42(13): 61-64. [23] 孙震笙, 柳鹏, 余涛, 等. 利用卷积神经网络对GF-3输电塔的检测与分类[J]. 遥感信息, 2019, 34(5): 88-97. Sun Z S, Liu P, Yu T, et al.Electricity pylon detection and classification for GF-3 imagery using deep convolutional neural networks[J]. Remote Sensing Information, 2019, 34(5): 88-97. [24] 程文博, 张云, 周华民, 等. 基于卷积神经网络的注塑制品短射缺陷识别[J]. 塑料工业, 2015(7): 31-34. Cheng W B, Zhang Y, Zhou H M, et al.The short shot defect recognition of injection molded plastics based on convolution neural network[J]. Plastics Industry, 2015(7): 31-34. [25] 冯兴杰, 张志伟, 史金钏. 基于卷积神经网络和注意力模型的文本情感分析[J]. 计算机应用研究, 2018, 35(5): 1434-1436. Feng X J, Zhang Z W, Shi J C.Text sentiment analysis based on convolutional neural networks and attention model[J]. Computer Applications Research, 2018, 35(5): 1434-1436. [26] Chen J, Liu Q, Gao L W.Visual tea leaf disease recognition using a convolutional neural network model[J]. Symmetry, 2019, 11(3): 343. [27] Borah S, Hines E L, Bhuyan M.Wavelet transform based image texture analysis for size estimation applied to the sorting of tea granules[J]. Journal of Food Engineering, 2007, 79(2): 629-639. [28] 高震宇, 王安, 刘勇, 等. 基于卷积神经网络的鲜茶叶智能分选系统研究[J]. 农业机械学报, 2017, 48(7): 53-58. Gao Z Y, Wang A, Liu Y, et al.Intelligent fresh-tea-leaves sorting system research based on convolution neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 53-58. [29] 葛程, 孙国强. 基于卷积神经网络的图像分类研究[J]. 软件导刊, 2018, 17(10): 27-31. Ge C, Sun G Q.Image classification based on convolution neural network[J]. Software Guide, 2018, 17(10): 27-31. [30] 杜云梅, 黄帅, 梁会营. 基于深度卷积神经网络的脑电图异常检测[J]. 华南师范大学学报(自然科学版), 2020, 52(2): 122-128. Du Y M, Huang S, Liang H Y.The detection of anomaly in electroencephalogram with deep convolutional neural networks[J]. Journal of South China Normal University (Natural Science), 2020, 52(2): 122-128. [31] He K, Zhang X, Ren S, et al.Deep residual learning for image recognition[J]. Computer Vision and Pattern Recognition, 2016: 770-778. [32] Hao X, Zhang G, Ma S.Deep learning[J]. International Journal of Semantic Computing, 2016, 10(3): 417-439. [33] Zhang S, Zhang S, Zhang C, et al.Cucumber leaf disease identification with global pooling dilated convolutional neural network[J]. Computers and Electronics in Agriculture, 2019, 162: 422-430. [34] 袁银. 基于深度学习的植物图像识别方法研究[J]. 现代农业科技, 2017, 709(23): 278-280. Yuan Y.Research on plant image recognition method based on depth learning[J]. Modern Agricultural Science and Technology, 2017, 709(23): 278-280. [35] 胡挺, 祝永新, 田犁, 等. 面向移动平台的轻量级卷积神经网络架构[J]. 计算机工程, 2019, 45(1): 17-22. Hu T, Zhu Y X, Tian L, et al.Lightweight convolutional neural network architecture for mobile platforms[J]. Computer Engineering, 2019, 45(1): 17-22. [36] 刘洋, 冯全, 王书志. 基于轻量级CNN的植物病害识别方法及移动端应用[J]. 农业工程学报, 2019, 35(17): 194-204. Liu Y, Feng Q, Wang S Z.Plant disease identification method based on lightweight CNN and mobile application[J]. Agricultural Engineering, 2019, 35(17): 194-204. [37] Barbedo J A.Plant disease identification from individual lesions and spots using deep learning[J]. Bisoystems Engineering, 2019, 180: 96. doi: 10.1016/j.biosystemseng.2019.02.002. [38] 王文成, 蒋慧, 乔倩, 等. 基于ResNet50网络的十种鱼类图像分类识别研究[J]. 农村经济与科技, 2019, 30(19): 60-62. Wang W C, Jiang H, Qiao Q, et al.Study on classification and recognition of ten fish images based on resnet 50 network[J]. Rural Economics and Technology, 2019, 30(19): 60-62. [39] 徐岩, 刘林, 李中远, 等. 基于卷积神经网络的玉米品种识别[J]. 江苏农业学报, 2020, 36(1): 18-23. Xu Y, Liu L, Li Z Y, et al.Recognition of maize varieties based on convolutional neural network[J]. Jiangsu Agricultural Journal, 2020, 36(1): 18-23. [40] 袁培森, 黎薇, 任守纲, 等. 基于卷积神经网络的菊花花型和品种识别[J]. 农业工程学报, 2018, 34(5): 152-158 Yuan P S, Li W, Ren S G, et al.Recognition for flower type and variety of chrysanthemum with convolutional neural network[J]. Agricultural Engineering, 2018, 34(5): 152-158. [41] Tan C, Wu C, Huang Y, et al.Identification of different species of Zanthoxyli Pericarpium based on convolution neural network[J]. PLoS ONE, 2020, 15(4): e0230287. doi: 10.1371/journal.pone.0230287. [42] 邱津怡, 罗俊, 李秀, 等. 基于卷积神经网络的多尺度葡萄图像识别方法[J]. 计算机应用, 2019, 39(10): 2930-2936. Qiu J Y, Luo J, Li X, et al.Multi-scale grape image recognition method based on convolutional neural network[J]. Computer Applications, 2019, 39(10): 2930-2936. [43] Xue W, Hu X, Wei Z, et al.A fast and easy method for predicting agricultural waste compost maturity by image-based deep learning[J]. Bioresource Technology, 2019, 290: 121761. doi: 10.1016/j.biortech.2019.121761. |