[1] 陈亮, 虞富莲, 童启庆. 关于茶组植物分类与演化的讨论[J]. 茶叶科学, 2000, 20(2): 89-94. Chen L, Yu F L, Tong Q Q.Discussions on phylogenetic classification and evolution of Sect Thea[J]. Journal of Tea Science, 2000, 20(2): 89-94. [2] 陈亮, 虞富莲, 杨亚军. 茶树种质资源与遗传改良[M]. 北京: 中国农业科学技术出版社, 2006: 11-45. Chen L, Yu F L, Yang Y J.Germplasm and genetic improvement of tea plant [M]. Beijing: China Agricultural Science and Technology Press, 2006: 11-45. [3] 段志芬, 杨盛美, 唐一春, 等. 云南大理茶遗传多样性分析[J]. 山西农业科学, 2019, 47(12): 2068-2072. Duan Z F, Yang S M, Tang Y C, et al.Genetic diversity analysis of Camellia taliensis from Yunnan province[J]. Journal of Shanxi Agricultural Sciences, 2019, 47(12): 2068-2072. [4] Ogino A, Taniguchi F, Yoshida K, et al.A new DNA marker cafless-TCS1 for selection of caffeine-less tea plants[J]. Breeding Science, 2019, 69(3): 393-400. [5] 李苗苗, Meegahakumbura M K, 严丽君, 等. 核基因组微卫星标记揭示大理茶参与了阿萨姆茶的驯化过程[J]. 植物分类与资源学报, 2015, 37(1): 29-37. Li M M, Meegahakumbura M K, Yan L J, et al.Genetic involvement of Camellia taliensis in the domestication of C.sinensis var. assamica (Assimica Tea) revealed by nuclear microsatellite markers[J]. Plant Diversity and Resources, 2015, 37(1): 29-37. [6] Sharma V S, Kumudini Gunasekare M T. Global tea science[M]. Cambridge: Burleigh Dodds Science Publishing Limited, 2016: 3-19. [7] 季鹏章, 汪云刚, 蒋会兵, 等. 云南大理茶资源遗传多样性的AFLP分析[J]. 茶叶科学, 2009, 29(5): 329-335. Ji P Z, Wang Y G, Jiang H B, et al.Genetic diversity of Camellia taliensis from Yunnan province of China revealed by AFLP analysis[J]. Journal of Tea Science, 2009, 29(5): 329-335. [8] Zhao D W, Yang J B, Yang S X, et al.Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers[J]. BMC Plant Biology, 2014, 14: 14. [9] 宋永全, 苏祝成. 云南古茶树资源现状与保护对策[J]. 林业调查规划, 2005, 1(5): 108-111. Song Y Q, Su Z C.Status quo of ancient tea tree resources of Yunnan and measures for protection[J]. Forest Inventory and Planning, 2005, 1(5): 108-111. [10] 金燕, 卢宝荣. 遗传多样性的取样策略[J]. 生物多样性, 2003, 11(2): 155-161. Jin Y, Lu B R.Sampling strategy for genetic diversity[J]. Chinese Biodiversity, 2003, 11(2): 155-161. [11] 黄丹娟, 马建强, 陈亮. 茶树PVP申请品种的SSR分子标记鉴定和系谱关系分析[J]. 茶叶科学, 2016, 36(1): 68-76. Huang D J, Ma J Q, Chen L.SSR identification and pedigree analysis of PVP application cultivars in tea plant[J]. Journal of Tea Science, 2016, 36(1): 68-76. [12] 毛娟, 江鸿键, 李崇兴, 等. 云南白莺山地区茶树遗传多样性研究[J]. 茶叶科学, 2018, 38(1): 69-77. Mao J. Jiang H J, Li C X, et al.Genetic diversity analysis of tea plant in Baiyingshan mountain of Yunnan[J]. Journal of Tea Science, 2018, 38(1): 69-77. [13] Peakall R O D, Smouse P E. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research[J]. Molecular Ecology Resources, 2006, 6(1): 288-295. [14] Liu K, Muse S V.PowerMarker: an integrated analysis environment for genetic marker analysis[J]. Bioinformatics, 2005, 21(9): 2128-2129. [15] Yeh F C.Population genetic analysis of co-dominant and dominant markers and quantitative traits[J]. Belgian Journal of Botany, 1997, 129: 157. [16] Luikart G, Cornuet J M.Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data[J]. Conservation Biology, 1998, 12(1): 228-237. [17] Excoffier L, Lischer H E L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10: 564-567. [18] Hubisz M J, Falush D, Stephens M, et al.Inferring weak population structure with the assistance of sample group information[J]. Molecular Ecology Resources, 2009, 9(5): 1322-1332. [19] Earl D A.STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method[J]. Conservation Genetics Resources, 2012, 4(2): 359-361. [20] Jakobsson M, Rosenberg N A.CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure[J]. Bioinformatics, 2007, 23(14): 1801-1806. |