Journal of Tea Science ›› 2021, Vol. 41 ›› Issue (4): 564-576.doi: 10.13305/j.cnki.jts.2021.04.009
• Research Paper • Previous Articles Next Articles
CHEN Dongmei1, HAN Wenyan2, ZHOU Xianfeng1, WU Kaihua1, ZHANG Jingcheng1,*
Received:
2020-08-28
Revised:
2020-11-17
Online:
2021-08-15
Published:
2021-08-12
CLC Number:
CHEN Dongmei, HAN Wenyan, ZHOU Xianfeng, WU Kaihua, ZHANG Jingcheng. Tea Yield Prediction in Zhejiang Province Based on Adaboost BP Model[J]. Journal of Tea Science, 2021, 41(4): 564-576.
[1] 毛祖法, 罗列万, 陆德彪, 等. 浙江茶叶产业转型升级基本方略研究[J]. 中国茶叶, 2010, 32(10): 6-9. Mao Z F, Luo L W, Lu D B, et al.Study on basic strategy of transformation and upgrade of tea industry of Zhejiang Province[J]. China Tea, 2010, 32(10): 6-9. [2] 胡克满, 胡海燕. 基于灰色神经网络的茶叶产量预测算法[J]. 浙江农业科学, 2019, 60(4): 577-579. Hu K M, Hu H Y.Yield prediction algorithm of tea based on grey neural network[J]. Journal of Zhejiang Agricultural Sciences, 2019, 60(4): 577-579. [3] 俞春芳. 中国茶叶生产布局特征及影响因素研究——基于全国408个茶叶生产县的调查[D]. 浙江: 浙江大学, 2018. Yu C F.Study on the Characteristics and influencing factors of China’s tea production distribution: based on the survey of 408 counties [D]. Zhejiang: Zhejiang University, 2018. [4] 张璠, 肖斌. 茶叶产量与气象因子的灰色关联度分析——以陕南茶区为例[J]. 西北农业学报, 2018, 27(5): 735-740. Zhang P, Xiao B.Grey correlation analysis between tea yield and meteorological factors: case study of tea region in southern Shaanxi[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2018, 27(5): 735-740. [5] 孙智敏. 提高春茶产量的主要技术措施[J]. 福建茶叶, 2003, 25(3): 37. Sun Z M.Main technical measures to improve the yield of spring tea[J]. Tea in Fujian, 2003, 25(3): 37. [6] 朱秀红, 郑美琴, 姚文军, 等. 基于SPSS的日照市茶叶产量预测模型的建立[J]. 河南农业科学, 2010(7): 31-33. Zhu X H, Zheng M Q, Yao W J, et al.The tea yield prediction model based on SPSS statistical software in Rizhao city[J]. Journal of Henan Agricultural Sciences, 2010(7): 31-33. [7] 高洁煌. 基于GM(1,1)模型的武夷山市茶叶产量预测[J]. 科技视界, 2014(22): 21-22. Gao J H.Forecast on the tea production of Wuyishan city by GM(1,1) model[J]. Science & Technology Vision, 2014(22): 21-22. [8] 吕海侠, 赵景惠, 傅霞. 基于残差融合的ARMA-GM(1,1)模型茶叶产量预测[J]. 甘肃科学学报, 2018, 30(5): 24-28. Lv H X, Zhao J H, Fu X.Tea production prediction under ARMA-GM (1,1) model based on residual fusion[J]. Journal of Gansu Sciences, 2018, 30(5): 24-28. [9] 方孝荣, 丁希斌, 李晓丽. 基于灰色马尔柯夫链模型的浙江省名优茶产量预测[J]. 农机化研究, 2014, 36(7): 18-21. Fang X R, Ding X B, Li X L.Yield prediction of famous green tea in Zhejiang Province based on Grey-Markov chain theory[J]. Journal of Agricultural Mechanization Research, 2014, 36(7): 18-21. [10] 刘春涛, 魏明明, 郭丽娜. 气象要素对青岛崂山茶叶产量影响分析[J]. 中低纬山地气象, 2018, 42(1): 57-60. Liu C T, Wei M M, Guo L N.The effect of meteorological factors on tea yield in Laoshan[J]. Mid-Low Latitude Mountain Meteorology, 2018, 42(1): 57-60. [11] 金志凤, 黄敬峰, 李波, 等. 基于GIS及气候-土壤-地形因子的浙江省茶树栽培适宜性评价[J]. 农业工程学报, 2011, 27(3): 231-236. Jin Z F, Huang J F, Li B, et al.Suitability evaluation of tea trees cultivation based on GIS in Zhejiang Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(3): 231-236. [12] 赵辉, 米鸿涛, 杜子璇, 等. 河南省茶树适宜种植气候区划研究[J]. 茶叶科学, 2016, 36(3): 330-336. Zhao H, Mi H T, Du Z X, et al.Study on the climate regionalization of tea plant in Henan Province[J]. Journal of Tea Science, 2016, 36(3): 330-336. [13] 阳坤, 何杰. 中国区域地面气象要素驱动数据集(1979-2018)[DS]. 国家青藏高原科学数据中心, 2019. doi: 10.11888/AtmosphericPhysics.tpe.249369.file. Yang K, He J.China meteorological forcing dataset (1979-2018) [DS]. National Tibetan Plateau Data Center, 2019. doi: 10.11888/AtmosphericPhysics.tpe.249369.file. [14] He J, Yang K, Tang W, et al.The first high-resolution meteorological forcing dataset for land process studies over China[J]. Scientific Data, 2020, 7: 25. doi: 10.1038/s41597-020-0369-y. [15] Yang K, He J, Tang W, et al.On downward shortwave and longwave radiations over high altitude regions: observation and modeling in the Tibetan Plateau[J]. Agricultural & Forest Meteorology, 2010, 150(1): 38-46. [16] Moniz N, Branco P, Torgo L.Evaluation of ensemble methods in imbalanced regression tasks[C]//International Workshop on Learning with Imbalanced Domains: Theory and Applications. Proceedings of Machine Learning Research 74, 2017: 129-140. [17] 孙炜. 基于代价敏感的改进AdaBoost算法在不平衡数据中的应用[D]. 广州: 暨南大学, 2018. Sun W.The application of improved adaBoost algorithm based on cost sensitive in imbalanced data [D]. Guangzhou: Jinan University, 2018. [18] Przemysław S, Krawczyk B.Influence of minority class instance types on SMOTE imbalanced data oversampling[C]//International Workshop on Learning with Imbalanced Domains: Theory and Applications. Proceedings of Machine Learning Research 74, 2017: 7-21. [19] 王来, 樊重俊, 杨云鹏, 等. 面向不平衡数据分类的KFDA-Boosting算法[J]. 计算机应用研究, 2019, 36(3): 807-811. Wang L, Fan C J, Yang Y P, et al.KFDA-Boosting algorithm oriented to imbalanced data classification[J]. Application Research of Computers, 2019, 36(3): 807-811. [20] Zhu T, Lin Y, Liu Y, et al.Minority oversampling for imbalanced ordinal regression[J]. Knowledge-Based Systems, 2019, 166: 140-155. [21] Martin F M.A scaled conjugate gradient algorithm for fast supervised learning[J]. Neural Networks, 1993, 6(4): 525-533. [22] Freund Y, Schapire R E.A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55(1): 119-139. [23] Michael K, Leslie G V.Cryptographic limitation on learning Boolean formulae and finite automata[C]//Johnson D S. STOC'89: Proceedings of the twenty-first annual ACM symposium on Theory of computing. New York: Association for Computing Machinery, 1989: 433-444. [24] 金志凤, 封秀燕. 基于GIS的浙江省茶树栽培气候区划[J]. 茶叶, 2006, 32(1): 7-10. Jin Z F, Feng X Y.Tea plant climate division in Zhejiang Province base on GIS technology[J]. Journal of Tea, 2006, 32(1): 7-10. [25] Waldner F, Canto G S, Defourny P.Automated annual cropland mapping using knowledge-based temporal features[J]. Isprs Journal of Photogrammetry & Remote Sensing, 2015, 110: 1-13. [26] Zhou Y, Xiao X, Qin Y, et al.Mapping paddy rice planting area in rice-wetland coexistent areas through analysis of Landsat 8 OLI and MODIS images[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 46: 1-12. [27] Rajapakse R M S S, Tripathi N K, Honda K. Spectral characterization and LAI modelling for the tea ( [28] 杨艳魁, 陈芸芝, 吴波, 等. 基于高分二号影像结合纹理信息的茶园提取[J]. 江苏农业科学, 2019, 47(2): 210-214. Yang Y K, Chen Y Z, Wu B, et al.Tea garden extraction based on gaofen-2 image with texture information[J]. Jiangsu Agricultural Sciences, 2019, 47(2): 210-214. [29] 朱泽润. 基于高分辨率遥感影像的茶园场景提取方法[D]. 武汉: 武汉大学, 2018. Zhu Z R.Tea garden scene extraction method based on high resolution remote sensing image [D]. Wuhan: Wuhan University, 2018. [30] 刘峻明, 和晓彤, 王鹏新, 等. 长时间序列气象数据结合随机森林法早期预测冬小麦产量[J]. 农业工程学报, 2019, 35(6): 158-166. Liu J M, He X T, Wang P X, et al.Early prediction of winter wheat yield with long time series meteorological data and random forest method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 158-166. [31] 丑洁明, 叶笃正. 构建一个经济-气候新模型评价气候变化对粮食产量的影响[J]. 气候与环境研究, 2006, 11(3): 347-353. Chou J M, Ye D Z.Assessing the effect of climate changes on grains yields with a new economy-climate model[J]. Climatic and Environmental Research, 2006, 11(3): 347-353. [32] 齐邦宇, 方成刚, 王群, 等. 基于经济-气候耦合模型的昆明冬小麦产量评估[J]. 西南农业学报, 2013, 26(6): 2241-2246. Qi B Y, Fang C G, Wang Q, et al.Study on assessing total winter-wheat yield based on an economy-climate coupling model in Kunming city[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(6): 2241-2246. |
[1] | GAO Jianjian, CHEN Dan, PENG Jiakun, WU Wenliang, CAI Liangsui, CAI Yawei, TIAN Jun, WAN Yunlong, SUN Weijiang, HUANG Yan, WANG Zhe, LIN Zhi, DAI Weidong. Comparison on Chemical Components of Yunnan and Fuding White Tea Based on Metabolomics Approach [J]. Journal of Tea Science, 2022, 42(5): 623-637. |
[2] | CHEN Qiyu, MA Jianqiang, CHEN Jiedan, CHEN Liang. Genetic Diversity of Mature Leaves of Tea Germplasms Based on Image Features [J]. Journal of Tea Science, 2022, 42(5): 649-660. |
[3] | LI Yanchun, WANG Hang, LI Zhaowei, YE Jing, WANG Yixiang. Ameliorative Effect of Several Measures on Soil Physicochemical Properties and Microbial Community Structures in Acidified Tea Gardens [J]. Journal of Tea Science, 2022, 42(5): 661-671. |
[4] | SUN Yue, WU Jun, WEI Chaoling, LIU Mengyue, GAO Chenxi, ZHANG Lingzhi, CAO Shixian, YU Shuntian, JIN Shan, SUN Weijiang. Screening of Tea Germplasm Resistant to Matsumurasca onukii and Dendrothrips minowai Priesner and Analysis of Resistance-related Factors [J]. Journal of Tea Science, 2022, 42(5): 689-704. |
[5] | CHEN Yuhong, GAO Ying, HAN Zhen, YIN Junfeng. Analysis of the Saponin Contents and Composition in Tea Seeds of Different Germplasms [J]. Journal of Tea Science, 2022, 42(5): 705-716. |
[6] | CHEN Hui, YANG Liling, CHEN Jinhua, HUANG Jian'an, GONG Yushun, LI Shi. Effect of Temperature-controlled Pile-fermentation on Aroma Quality of Primary Dark Tea [J]. Journal of Tea Science, 2022, 42(5): 717-730. |
[7] | LI Zheng, LIU Ding, HUO Zenghui, CHEN Fuqiao. Analysis on the Competitiveness and Complementarity of Tea Trade between China and RCEP Members [J]. Journal of Tea Science, 2022, 42(5): 740-752. |
[8] | WANG Yuyuan, LIU Renjian, LIU Shaoqun, SHU Canwei, SUN Binmei, ZHENG Peng. Expression Analysis and Functional Identification of CsTT2 R2R3-MYB Transcription Factor in Tea Plants [J]. Journal of Tea Science, 2022, 42(4): 463-476. |
[9] | LI Jing, LIN Cairong, HUANG Yan, DENG Xuming, WANG Yiqing, SUN Weijang. Effects of Tea Polyphenols on Agrobacterium-mediated Plant Genetic Transformation System [J]. Journal of Tea Science, 2022, 42(4): 477-490. |
[10] | ZHAO Dongwei. Nomenclature, Typification, and Natural Distribution of Camellia sinensis var. assamica (Theaceae) [J]. Journal of Tea Science, 2022, 42(4): 491-499. |
[11] | LIU Jianjun, ZHANG Jinyu, PENG Ye, LIU Xiaobo, YANG Yun, HUANG Tao, WEN Beibei, LI Meifeng. Effects of Light Waves on the Aroma Substances of Fresh Tea Leaves in Summer and Autumn During Spreading and the Quality of Final Green Tea [J]. Journal of Tea Science, 2022, 42(4): 500-514. |
[12] | ZHANG Yinggen, XIANG Lihui, CHEN Lin, LIN Qingxia, SONG Zhenshuo, WANG Lili. Effects of Air Conditions Preset for Withering on Flavor Quality and Chemical Profiles of White Teas [J]. Journal of Tea Science, 2022, 42(4): 525-536. |
[13] | LI Ziqiang, YANG Mei, ZHANG Xinzhong, LUO Fengjian, ZHOU Li, LOU Zhengyun, SUN Hezhi, WANG Xinru, CHEN Zongmao. Residue Determination of Sixteen Pesticides in Green Tea by UPLC-MS/MS [J]. Journal of Tea Science, 2022, 42(4): 537-548. |
[14] | FANG Mengrui, LÜ Jun, RUAN Jianyun, BIAN Lei, WU Chuanyu, YAO Qing. Tea Buds Detection Model Using Improved YOLOv4-tiny [J]. Journal of Tea Science, 2022, 42(4): 549-560. |
[15] | SUN Ying, CHEN Xin, YANG Hua, YING Jian, SHAO Danqing, LÜ Xiaohua, XIAO Jie, CHEN Zhixiong, LI Song, QIN Junjie, ZHENG Bin, GAO Jianshe. Clinical Trial on the Effect of Drinking Jinhua Xiangyuan Tea for 3 Months on the Improvement of Glucose and Lipid Metabolism in A Small Sample Hyperlipidemia Population [J]. Journal of Tea Science, 2022, 42(4): 561-576. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||