Journal of Tea Science ›› 2021, Vol. 41 ›› Issue (5): 593-607.doi: 10.13305/j.cnki.jts.20210917.002
• Review • Next Articles
WU Wenliang1, TONG Tong1, HU Yao2, ZHOU Hao1, YIN Xia1, ZHANG Shuguang1,*
Received:
2021-07-30
Revised:
2021-08-23
Online:
2021-10-15
Published:
2021-10-12
CLC Number:
WU Wenliang, TONG Tong, HU Yao, ZHOU Hao, YIN Xia, ZHANG Shuguang. Camellia Ptilophylla and Specific Chemical Components, Theirs Health Beneficial Effects[J]. Journal of Tea Science, 2021, 41(5): 593-607.
[1] 叶创兴, 郑新强, 袁长春, 等. 无咖啡因茶树新资源可可茶研究综述[J]. 广东农业科学, 2001(2): 12-15. Ye C X, Zheng X Q, Yuan C C, et al.Research on cocoa tea, a new source of decaffeinated tea tree[J]. Journal of Guangdong Agriculture Science, 2001(2): 12-15. [2] 张娅楠, 陶琳琳, 高路, 等. 可可茶化学成分及药理功能的研究进展[J]. 食品科技, 2020, 45(7): 102-107. Zhang Y N, Tao L L, Gao L, et al.Research advance on [3] 何玉媚, 彭力, 李成仁, 等. 可可茶无性系品种的生化成分研究[J]. 广东农业科学, 2011, 38(6): 10-13. He Y M, Peng L, Li C R, et al.Research on the biochemical ingredients of cultivated varieties of cocoa tea[J]. Journal of Guangdong Agriculture Science, 2011, 38(6): 10-13. [4] Peng L, Khan N, Afaq F, et al. [5] Yang X, Wang Y, La K, et al.Inhibitory effects of cocoa tea ( [6] Gao X, Li X, Ho C, et al.Cocoa tea ( [7] Xie B F, Liu Z C, Pan Q C, et al.The anticancer effect and anti-DNA topoisomerase II effect of extracts of [8] Yang X R, Wat E, Wang Y P, et al.Effect of dietary cocoa tea ( [9] Li K K, Liu C L, Shiu H T, et al.Cocoa tea ( [10] Kurihara H, Shibata H, Fukui Y, et al.Evaluation of the hypolipemic property of [11] Li J, Yuan Y Q, Wang R M, et al.Herbal antihyperlipidemic formulation of cocoa tea: preparation and [12] Li K K, Shi X G, Yang X R, et al.Antioxidative activities and the chemical constituents of two Chinese teas, [13] 彭力. 可可茶驯化选育中特征生化成分和抗癌活性的研究[D]. 广州: 中山大学, 2010. Peng L.Characterization of biochemical components and anticancer activity in the domestication and selection of cocoa tea [D]. Guangzhou: Sun Yat-sen University, 2010. [14] Peng L, Wang X, Shi X, et al.Characterization of the constituents and antioxidative activity of cocoa tea ( [15] 娄远蕾. 镧抑制脂多糖诱导小鼠巨噬细胞产生一氧化氮的机制[D]. 南昌: 南昌大学, 2007. Lou Y L.Mechanisms of lanthanum inhibitting the production of nitric oxide in macrophages of mice induced by lipopolysaccharide [D]. Nanchang: Nanchang University, 2007. [16] Lin X, Chen Z, Zhang Y, et al.Interactions among chemical components of cocoa tea ( [17] Gao X, Lin X, Li X, et al.Cellular antioxidant, methylglyoxal trapping, and anti-inflammatory activities of cocoa tea ( [18] Batterman R C, Grossman A J, Duninsky J, et al.Reevaluation of the usefulness of theobromine calcium gluconate for the management of congestive heart failure and anginal syndrome[J]. International Record of Medicine and General Practice Clinics, 1959, 172(6): 318-323. [19] Boden W E.High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from framingham to the veterans affairs high-density lipoprotein intervention trial[J]. The American Journal of Cardiology, 2000, 86(12): 19-22. [20] Assmann G, Gotto A M.HDL cholesterol and protective factors in atherosclerosis[J]. Circulation, 2004, 109(23): 8-14. [21] Lee J, Shirk A, Oram J F, et al.Polarized cholesterol and phospholipid efflux in cultured gall-bladder epithelial cells: evidence for an ABCA1-mediated pathway[J]. Biochemical Journal, 2002, 364(2): 475-484. [22] Neufingerl N, Zebregs Y E, Schuring E A, et al.Effect of cocoa and theobromine consumption on serum HDL-cholesterol concentrations: a randomized controlled trial[J]. The American Journal of Clinical Nutrition, 2013, 97(6): 1201-1209. [23] Barcz E, Sommer E, Sokolnicka I, et al.The influence of theobromine on angiogenic activity and proangiogenic cytokines production of human ovarian cancer cells[J]. Oncology Reports, 1998, 5(2): 517-537. [24] Skopińska-Rózewska E, Sommer E, Demkow U, et al.Screening of angiogenesis inhibitors by modified tumor-induced angiogenesis (TIA) test in lung cancer[J]. Roczniki Akademii Medycznej W Białymstoku, 1997, 42(1): 287-296. [25] Gil M, Skopińska-Rózewska E, Radomska D, et al.Effect of purinergic receptor antagonists suramin and theobromine on tumor-induced angiogenesis in BALB/c mice[J]. Folia Biologica, 1993, 39(2): 63-68. [26] Barcz E, Sommer E, Janik P, et al.Adenosine receptor antagonism causes inhibition of angiogenic activity of human ovarian cancer cells[J]. Oncology Reports, 2000, 7(6): 1285-1376. [27] Sugimoto N, Miwa S, Hitomi Y, et al.Theobromine, the primary methylxanthine found in [28] Carla-Cadoná F, Kolinski-Machado A, Farina-Azzolin V, et al.Guaraná a caffeine-rich food increases oxaliplatin sensitivity of colorectal HT-29 cells by apoptosis pathway modulation[J]. Anti-Cancer Agents in Medicinal Chemistry, 2016, 16(8): 1055-1065. [29] Shojaei-Zarghani S, Rafraf M, Khosroushahi A Y, et al.Effectiveness of theobromine on inhibition of 1, 2-dimethylhydrazine-induced rat colon cancer by suppression of the Akt/GSK3β/β-catenin signaling pathway[J]. Journal of Functional Foods, 2020, 75: 104293. doi: 10.1016/j.jff.2020.104293. [30] Shojaei-Zarghani S, Khosroushahi A Y, Rafraf M.Oncopreventive effects of theanine and theobromine on dimethylhydrazine-induced colon cancer model[J]. Biomedicine & Pharmacotherapy, 2021, 134: 111140. doi: 10.1016/j.biopha.2020.111140. [31] Fuggetta M P, Zonfrillo M, Villivà C, et al.Inflammatory microenvironment and adipogenic differentiation in obesity: the inhibitory effect of theobromine in a model of human obesity in vitro[J]. Mediators of Inflammation, 2019, 2019: 1515621. doi: 10.1155/2019/1515621. [32] Jang Y J, Koo H J, Sohn E, et al.Theobromine inhibits differentiation of 3T3-L1 cells during the early stage of adipogenesis [33] Mitani T, Watanabe S, Yoshioka Y, et al.Theobromine suppresses adipogenesis through enhancement of CCAAT-enhancer-binding protein β degradation by adenosine receptor A1[J]. Biochimica Et Biophysica Acta, 2017, 1864(12): 2438-2448. [34] Ikeda K, Yamada T.UCP1 dependent and independent thermogenesis in brown and beige adipocytes[J]. Frontiers in Endocrinology, 2020, 11: 498. doi: 10.3389/fendo.2020.00498. [35] Jang M H, Kang N H, Mukherjee S, et al.Theobromine, a methylxanthine in cocoa bean, stimulates thermogenesis by inducing white fat browning and activating brown adipocytes[J]. Biotechnology and Bioprocess Engineering, 2018, 23(6): 617-626. [36] Jang M H, Mukherjee S, Choi M J, et al.Theobromine alleviates diet-induced obesity in mice via phosphodiesterase-4 inhibition[J]. European Journal of Nutrition, 2020, 59: 3503-3516. [37] 程青格, 龚其海. 阿尔茨海默病的发病机制及治疗研究进展[J]. 遵义医学院学报, 2013, 36(6): 586-589. Cheng Q G, Gong Q H.Research advances on the pathogenesis and treatment of Alzheimer's disease[J]. Acta Academiae Medicine Zunyi, 2013, 36(6): 586-589. [38] Liu C, Kanekiyo T, Xu H, et al.Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy[J]. Nature Reviews Neurology, 2013, 9(2): 106-118. [39] Holtzman D M, Herz J, Bu G.Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease[J]. Cold Spring Harbor Perspectives in Medicine, 2012, 2(3): a006312. doi: 10.1101/cshperspect.a006312. [40] Mendiola-Precoma J, Padilla K, Rodríguez-Cruz A, et al.Theobromine-induced changes in A1 Purinergic receptor gene expression and distribution in a rat brain Alzheimer’s disease model[J]. Journal of Alzheimer's Disease, 2017, 55(3): 1273-1283. [41] Chen D Y, Bambah-Mukku D, Pollonini G, et al.Glucocorticoid receptors recruit the CaMKIIα-BDNF-CREB pathways to mediate memory consolidation[J]. Nature Neuroscience, 2012, 15(12): 1707-1714. [42] Islam R, Matsuzaki K, Sumiyoshi E, et al.Theobromine improves working memory by activating the CaMKII/CREB/BDNF pathway in rats[J]. Nutrients, 2019, 11(4): 888. doi: 10.3390/nu11040888. [43] Yoneda M, Sugimoto N, Katakura M, et al.Theobromine up-regulates cerebral brain-derived neurotrophic factor and facilitates motor learning in mice[J]. The Journal of Nutritional Biochemistry, 2017, 39: 110-116. [44] 陈智, 张露. 基于龋风险评估的龋病治疗计划[J]. 中华口腔医学杂志, 2021, 56(1): 45-50. Chen Z, Zhang L.Caries treatment planning based on caries risk assessment[J]. Chinese Journal of Stomatology, 2021, 56(1): 45-50. [45] Strålfors A.Effect on hamster caries by purine derivatives vanillin and some tannin-containing materials caries in relation to food consumption and animal growth[J]. Archives of Oral Biology, 1967, 12(3): 321-332. [46] Sadeghpour A.A neural network analysis of theobromine vs. fluoride on the enamel surface of human teeth: an experimental case study with strong implications for the production of a new line of revolutionary and natural non-fluoride based dentifrices[J]. Dissertation Abstracts International, 2007, 68(7): 150. [47] Kargul B, Özcan M, Peker S, et al.Evaluation of human enamel surfaces treated with theobromine: a pilot study[J]. Oral Health and Preventive Dentistry, 2012, 10(3): 275-282. [48] Shiau H J.Dentin hypersensitivity[J]. Journal of Evidence Based Dental Practice, 2012, 12(3): 220-228. [49] Amaechi B T, Mathews S M, Mensinkai P K.Effect of theobromine-containing toothpaste on dentin tubule occlusion in situ[J]. Clinical Oral Investigations, 2015, 19: 109-116. [50] A·赛之霍普尔, 中本哲夫. 含有可可碱的组合物和它们在治疗牙齿过敏症中的用途: CN201380032101.0[P].2019-7-30. A. Saizhope, Tetsuo N. Compositions containing theobromine and their use in the treatment of dental hypersensitivity: CN201380032101.0 [P].2019-7-30. [51] Nassar H M, Lippert F.Artificial caries lesion characteristics after secondary demineralization with theobromine-containing protocol[J]. Molecules, 2021, 26(2): 300. doi: 10.3390/molecules26020300. [52] Usmani O S, Belvisi M G, Patel H J, et al.Theobromine inhibits sensory nerve activation and cough[J]. The FASEB Journal, 2005, 19(2): 1-16. [53] Smit H J.Theobromine and the pharmacology of cocoa[J]. Methylxanthines, 2011, 200: 201-234. [54] Becker M A.Clinical aspects of monosodium urate monohydrate crystal deposition disease (gout)[J]. Rheumatic Disease Clinics of North America, 1988, 14(2): 377-394. [55] Grases F, Rodriguez A, Costa-Bauza A.Theobromine inhibits uric acid crystallization. A potential application in the treatment of uric acid nephrolithiasis[J]. PLoS One, 2014, 9(10): e111184. doi: 10.1371/journal.pone.0111184. [56] Papadimitriou A, Silva K C, Peixoto E B, et al.Theobromine increases NAD+/Sirt-1 activity and protects the kidney under diabetic conditions[J]. American Journal of Physiology-Renal Physiology, 2015, 308(3): 209-225. [57] Gu R, Shi Y, Huang W, et al.Theobromine mitigates IL-1β-induced oxidative stress, inflammatory response, and degradation of type II collagen in human chondrocytes[J]. International Immunopharmacology, 2020, 82: 106226. doi: 10.1016/j.intimp.2020.106226. [58] Martín-Peláez S, Camps-Bossacoma M, Massot-Cladera M, et al.Effect of cocoa's theobromine on intestinal microbiota of rats[J]. Molecular Nutrition &Food Research, 2017, 61(10): 1700238. doi: 10.1002/mnfr.201700238. [59] Ashihara H, Ludwig I A, Crozier A.Plant nucleotide metabolism biosynthesis, degradation, and alkaloid formation[M]. Chichester: John Wiley & Sons Ltd, 2020: 399-404. [60] Monteiro J, Alves M G, Oliveira P F, et al.Pharmacological potential of methylxanthines: retrospective analysis and future expectations[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(16): 2597-2625. [61] Xie L, Guo Y, Cai B, et al.Epimerization of epigallocatechin gallate to gallocatechin gallate and its anti-diabetic activity[J]. Medicinal Chemistry Research, 2013, 22(7): 3372-3378. [62] Ikeda I, Kobayashi M, Hamada T, et al.Heat-epimerized tea catechins rich in gallocatechin gallate and catechin gallate are more effective to inhibit cholesterol absorption than tea catechins rich in epigallocatechin gallate and epicatechin gallate[J]. Journal of Agricultural and Food Chemistry, 2003, 51(25): 7303-7307. [63] Kobayashi M, Unno T, Suzuki Y, et al.Heat-epimerized tea catechins have the same cholesterol-lowering activity as green tea catechins in cholesterol-fed rats[J]. Bioscience, Biotechnology, and Biochemistry, 2005, 69(12): 2455-2458. [64] Lee S M, Kim C W, Kim J K, et al.GCG-rich tea catechins are effective in lowering cholesterol and triglyceride concentrations in hyperlipidemic rats[J]. Lipids, 2008, 43(5): 419-429. [65] Lu C, Hwang L S.Polyphenol contents of Pu-erh teas and their abilities to inhibit cholesterol biosynthesis in Hep G2 cell line[J]. Food Chemistry, 2008, 111(1): 67-71. [66] Yilmazer-Musa M, Griffith A M, Michels A J, et al.Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of [67] Wu X Q, Ding H F, Hu X, et al.Exploring inhibitory mechanism of gallocatechin gallate on [68] Xie L W, Guo Y P, Cai B, et al.Epimerization of epigallocatechin gallate to gallocatechin gallate and its anti-diabetic activity[J]. Medicinal Chemistry Research, 2013, 22: 3372-3378. [69] Wu X Q, Zhang G W, Hu M M, et al.Molecular characteristics of gallocatechin gallate affecting protein glycation[J]. Food Hydrocolloids, 2020, 105: 105782. doi: 10.1016/j.foodhyd.2020.105782. [70] Park D H, Park J Y, Kang K S, et al.Neuroprotective effect of gallocatechin gallate on glutamate-induced oxidative stress in hippocampal HT22 cells[J]. Molecules, 2021, 26(5): 1387. doi: 10.3390/molecules26051387. [71] Guo Q, Zhao B L, Shen S R, et al.ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers[J]. Biochimica et Biophysica Acta, 1999, 1427(1): 13-23. [72] No J K, Kim Y J, Shim K H, et al.Inhibition of tyrosinase by green tea components[J]. Life Sciences, 1999, 65(21): 241-246. [73] Hara-Kudo Y, Yamasaki A, Sasaki M, et al.Antibacterial action on pathogenic bacterial spore by green tea catechins[J]. Journal of the Science of Food and Agriculture, 2005, 85(14): 2354-2361. [74] Sugita-Konishi Y, Hara-Kudo Y, Amano F, et al.Epigallocatechin gallate and gallocatechin gallate in green tea catechins inhibit extracellular release of Vero toxin from enterohemorrhagic [75] Hui X, Hua S, Wu Q, et al.Antimicrobial mechanism of epigallocatechin gallate and gallocatechin gallate: they target 1-deoxy-D-xylulose 5-phosphate reductoisomerase, the key enzyme of the MEP terpenoid biosynthetic pathway[J]. Archives of Biochemistry and Biophysics, 2017, 622: 1-8. [76] Li K K, Peng J M, Zhu W, et al.Gallocatechin gallate (GCG) inhibits 3T3-L1 differentiation and lipopolysaccharide induced inflammation through MAPK and NF-κB signaling[J]. Journal of Functional Foods, 2017, 30: 159-167. [77] Johansson N, Ahonen M, Kähäri V M.Matrix metalloproteinases in tumor invasion[J]. Cellular and Molecular Life Sciences CMLS, 2000, 57(1): 5-15. [78] Dell’Agli M, Bellosta S, Rizzi L, et al. A structure-activity study for the inhibition of metalloproteinase-9 activity and gene expression by analogues of gallocatechin-3-gallate[J]. Cellular and Molecular Life Sciences CMLS, 2005, 62: 2896-2903. [79] Shin S, Lee Y.Glyceollins, a novel class of soybean phytoalexins, inhibit SCF-induced melanogenesis through attenuation of SCF/c-kit downstream signaling pathways[J]. Experimental & Molecular Medicine, 2013, 45: e17. doi: 10.1038/emm.2013.20. [80] Zhang X, Li J, Li Y, et al.Anti-melanogenic effects of epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate (ECG) and gallocatechin-3-gallate (GCG) via down-regulation of cAMP/CREB /MITF signaling pathway in B16F10 melanoma cells[J]. Fitoterapia, 2020, 145: 104634. doi: 10.1016/j.fitote.2020.104634. [81] 吴命燕, 范方媛, 梁月荣, 等. 咖啡碱的生理功能及其作用机制[J]. 茶叶科学, 2010, 30(4): 235-242. Wu M Y, Fan F Y, Liang Y R, et al.The physiological functions of caffeine and their related mechanisms[J]. Journal of Tea Science, 2010, 30(4): 235-242. [82] 张梁, 陈欣, 陈博, 等. 茶多酚体内吸收、分布、代谢和排泄研究进展[J]. 安徽农业大学学报, 2016, 43(5): 667-675. Zhang L, Chen X, Chen B, et al.Research progress in the absorption, distribution, metabolism and excretion of tea polyphenols [83] Xie Y L, Kosińska A, Xu H R, et al.Milk enhances intestinal absorption of green tea catechins in |
[1] | WANG Ruru, XIAO Mengchao, LI Daxiang, LING Tiejun, XIE Zhongwen. Recent Advance on Quality Characteristics and Health Effects of Dark Tea [J]. Journal of Tea Science, 2018, 38(2): 113-124. |
[2] | QI Jie, XU Yinglei, LIANG Wenyi, FEI Duo, WU Xiner, JIN Jianchang, DU Qizhen, XU Yongquan, GAO Ying. Progress on the Preparation Technologies and the Active Improvement of EGCG Nano-carriers [J]. Journal of Tea Science, 2017, 37(2): 119-129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|