[1] Ponmurugan P, Baby U I, Rajkumar R.Growth, photosynthetic and biochemical responses of tea cultivars infected with various diseases[J]. Photosynthetica, 2007, 45(1): 143-146. [2] Wang Y C, Hao X Y, Wang L, et al.Diverse Colletotrichum species cause anthracnose of tea plants (Camellia sinensis (L.) O. Kuntze) in China[J]. Scientific Reports, 2016, 6(1): 35287. doi: 10.1038/srep35287. [3] 唐美君. 茶炭疽病的识别与防治[J]. 中国茶叶, 2019, 41(4): 6-8. Tang M J.Identification and control of tea anthrax[J]. China Tea, 2019, 41(4): 6-8. [4] Wang Y C, Qian W J, Li N N, et al.Metabolic changes of caffeine in tea plant (Camellia sinensis (L.) O. Kuntze) as defense response to Colletotrichum fructicola[J]. Journal of Agricultural and Food Chemistry, 2016, 64(35): 6685-6693. [5] 吴庆丽, 秦刚, 李慧, 等. 助剂激健与杀菌剂混用对3种茶树病害的防效[J]. 中国植保导刊, 2020, 40(8): 69-71. Wu Q L, Qin G, Li H, et al.The effect of the mixture of adjuvant Jijian' and fungicides against three diseases on tea[J]. China Plant Protection, 2020, 40(8): 69-71. [6] 郭迟鸣, 林文珍, 汪文华, 等. 不同生物药剂对茶炭疽病菌和茶轮斑病菌的室内毒力测定[J]. 现代农业科技, 2020(12): 116-117. Guo C M, Lin W Z, Wang W H, et al.Toxicity Measurement of Different Biological Reagents on Colletotrichum gloeosporioides and Pseudopestalotiopsis camelliae-sinensis[J]. Modern Agricultural Science and Technology, 2020(12): 116-117. [7] 向晓龙, 杨文, 刘惠芳, 等. 香茅醇不同旋光异构体对抑制茶炭疽病病菌活性的比较及其协同作用[J]. 茶叶科学, 2019, 39(4): 425-430. Xiang X L, Yang W, Liu H F, et al.Fungicidal activity comparison and synergetic effect of citronellol optical isomers against Colletotrichum gloeosporioides[J]. Journal of Tea Science, 2019, 39(4): 425-430. [8] 刘昌霖. 攸县油茶炭疽病病原菌的分离鉴定与其寄主的互作分析[D]. 长沙: 中南林业科技大学, 2020. Liu C L.Isolation and identification of anthracnose pathogen from Camellia yuhsienensis H.H.Hu and analysis of its host interaction [D]. Changsha: Central South University of Forestry & Technology, 2020. [9] Sowndhararajan K, Marimuthu S, Manian S.Biocontrol potential of phylloplane bacterium Ochrobactrum anthropi BMO-111 against blister blight disease of tea[J]. Journal of Applied Microbiology, 2013, 114(1): 209-218. [10] Dhar P G, Mangar P, Saha A, et al.Evaluation of the biocontrol efficacy of a Serratia marcescens strain indigenous to tea rhizosphere for the management of root rot disease in tea[J]. Plos One, 2018, 13(2): e191761. doi: 10.1371/journal.pone.0191761. [11] Viswanatham E, Kolandasamy M, Ponnusa P, et al.Evaluation of Streptomyces spp. for effective management of Poria hypolateritia causing red root-rot disease in tea plants[J]. Biological Control, 2015, 89: 75-83. [12] 宋培玲, 燕孟娇, 张键, 等. 不同杀菌剂对油菜黑胫病菌分生孢子萌发及菌丝生长的抑制作用[J]. 北方农业学报, 2018, 46(3): 70-75. Song P L, Yan M J, Zhang J, et al.Inhibition of different fungicides on conidia germination and mycelial growth of Leptosphaeria biglobosa[J]. Journal of Northern Agriculture, 2018, 46(3): 70-75. [13] 古丽皮艳, 韩青梅, 王兰, 等. 不同杀菌剂对玉米弯孢叶斑病菌的毒力测定[J]. 西北农林科技大学学报(自然科学版), 2005, 33(s1): 49-52. Gulipiya, Han Q M, Wang L, et al. Determination of different fungicidesʾ effect on Curvularia lunata[J]. Journal of Northwest A&F University(Natural Science Edition), 2005, 33(s1): 49-52. [14] Wang J, Cheung W, Leung D.Determination of pesticide residue transfer rates (percent) from dried tea leaves to brewed tea[J]. Journal of Agricultural and Food Chemistry, 2014, 62(4): 966-983. [15] Cao Y L, Tang H, Chen D Z, et al. A novel method based on MSPD for simultaneous determination of 16 pesticide residues in tea by LC-MS/MS [J]. Journal of Chromatography B, 2015, 998/999: 72-79. [16] Zhang X Z, Cui X, Wang X R, et al.Residue dissipation, transfer and safety evaluation of picoxystrobin during tea growing and brewing[J]. Journal of the Science of Food and Agriculture, 2020, 101(1): 194-204. [17] Nobutaka S.Biological control of fungal plant diseases using antagonistic bacteria[J]. Journal of General Plant Pathology, 2008, 74(6): 459-460. [18] Choudhary D K, Johri B N.Interactions of Bacillus spp. and plants: with special reference to induced systemic resistance (ISR)[J]. Microbiol Res, 2009, 164(5): 493-513. [19] Qin Y X, Han Y Z, Yu Y Q, et al.Complete genome sequence of Bacillus amyloliquefaciens L-S60, a plant growth-promoting and antifungal bacterium[J]. J Biotechnol, 2015, 212: 67-68. [20] Gowtham H G, Murali M, Singh S B, et al.Plant growth promoting rhizobacteria-Bacillus amyloliquefaciens improves plant growth and induces resistance in chilli against anthracnose disease[J]. Biological Control, 2018, 126: 209-217. [21] 梁丽琼, 黄少莉, 邵杭, 等. 水稻基腐病菌拮抗菌解淀粉芽孢杆菌E3菌株的鉴定及抑菌活性[J]. 华南农业大学学报, 2021, 42(4): 51-62. Liang L Q, Huang S L, Shao H, et al.Identification of an antagonistic strain Bacillus amyloliquefaciens E3 against Dickeya zeae and its antimicrobial activity[J]. Journal of South China Agricultural University, 2021, 42(4): 51-62. [22] 陆景倩, 郎剑锋, 杨秋侠, 等. 解淀粉芽孢杆菌对植物土传病害的作用机制[J]. 湖北农业科学, 2021, 60(12): 5-10. Lu J Q, Lang J F, Yang Q X, et al.Mechanism of Bacillus amyloliquefaciens on plant soil-borne disease[J]. Hubei Agricultural Sciences, 2021, 60(12): 5-10. [23] Sietske A, Diderichsen B.On the safety of Bacillus subtilis and B. amyloliquefaciens: a review[J]. Appl Microbiol Biotechnol, 1991, 36(1): 1-4. [24] David J A.Fungal cell wall chitinases and glucanases[J]. Microbiology, 2004, 150(7): 2029-2035. [25] Anupama S, Razia S, Jong-chan C, et al. Bacillus thuringiensis C25 which is rich in cell wall degrading enzymes efficiently controls lettuce drop caused by Sclerotinia minor[J]. European Journal of Plant Pathology, 2015, 142(3): 577-589. [26] Harish S, Manjula K, Podile A R.Fusarium udum is resistant to the mycolytic activity of a biocontrol strain of Bacillus subtilis AF 1[J]. FEMS Microbiology Ecology, 1998, 25(4): 385-390. [27] Li Y, Guo Q, Wei X, et al.Biocontrol effects of Penicillium griseofulvum against monkshood (Aconitum carmichaelii Debx.) root diseases caused by Sclerotium rolfsiii and Fusarium spp.[J]. Journal of Applied Microbiology, 2019, 127(5): 1532-1545. [28] 宋利沙, 蒋妮, 张占江, 等. 草珊瑚炭疽病拮抗细菌的鉴定及其抑菌机理[J]. 微生物学通报, 2020, 47(10): 3266-3276. Song L S, Jiang N, Zhang Z J, et al.Identification of antagonistic bacteria against anthracnose of Sarcandra glabra[J]. Microbiology China, 2020, 47(10): 3266-3276. [29] 李艳玲, 宋阿琳, 卢玉秋, 等. 不同土壤玉米根际挥发性有机物组成和微生物群落特征[J]. 植物营养与肥料学报, 2019, 25(10): 1633-1645. Li Y L, Song A L, Lu Y Q, et al.Volatile organic compound compositions and microbial community properties in maize rhizosphere among different soils[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(10): 1633-1645. [30] 李娟. 解淀粉芽孢杆菌TJ抑菌物质的研究[D]. 天津: 天津农学院, 2015. Li J.Study on the antifungal substance of Bacillus amyloliquefaciens [D]. Tianjin: Tianjin Agricultural University, 2015. [31] Gotor-Vila A, Teixidó N, Di Francesco A, et al.Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry[J]. Food Microbiology, 2017, 64: 219-225. [32] 赵月菊, 刘阳, 王瑶, 等, 2-壬醇在抑制禾谷镰刀菌中的应用: CN201610217256.7[P].2017-10-20 [2021-09-03]. Zhao Y J, Liu Y, Wang Y, et al, Application of 2-nonanol in the inhibition of Fusarium graminearum: CN201610217256.7 [P].2017-10-20 [2021-09-03]. [33] Yuan J, Raza W, Shen Q R, et al.Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense[J]. Applied and Environmental Microbiology, 2012, 78(16): 5942-5944. |