Journal of Tea Science ›› 2022, Vol. 42 ›› Issue (3): 301-315.doi: 10.13305/j.cnki.jts.20220416.003
• Review • Next Articles
XING Anqi1, WU Zichen1, XU Xiaohan1, SUN Yi1, WANG Genmei2, WANG Yuhua1,*
Received:
2021-09-01
Revised:
2021-11-03
Online:
2022-06-15
Published:
2022-06-17
CLC Number:
XING Anqi, WU Zichen, XU Xiaohan, SUN Yi, WANG Genmei, WANG Yuhua. Research Advances of Fluoride Accumulation Mechanisms in Tea Plants (Camellia sinensis)[J]. Journal of Tea Science, 2022, 42(3): 301-315.
[1] 庞廷祥. 大气氟污染对作物的危害及防治措施[J]. 热带农业工程, 2000(1): 3-6, 22. Pang T X.Harm of atmospheric fluorine pollution to crops and prevention measures[J]. Tropical Agricultural Engineering, 2000(1): 3-6, 22. [2] 沙济琴, 郑达贤. 茶树黄棪对氟的生物积累特征[J]. 福建茶叶, 1993(3): 25-28. Sha J Q, Zheng D X.The bioaccumulation characteristics of fluoride in [3] 王琼琼, 薛志慧, 陈志丹, 等. 不同茶树种质间氟铝元素积累特性的研究[J]. 热带作物学报, 2016, 37(5): 862-869. Wang Q Q, Xue Z H, Chen Z D, et al.Accumulation and distribution of fluoride/aluminum elements in different tea cultivars[J]. Chinese Journal of Tropical Crops, 2016, 37(5): 862-869. [4] Shu W S, Zhang Z Q, Lan C Y, et al.Fluoride and aluminium concentrations of tea plants and tea products from Sichuan Province, PR China[J]. Chemosphere, 2003, 52(9): 1475-1482. [5] 郜红建, 刘腾腾, 张显晨, 等. 安徽茶园土壤氟在茶树体内的富集与转运特征[J]. 环境化学, 2011, 30(8): 1462-1467. Gao H J, Liu T T, Zhang X C, et al.Bioaccumulation and translocation of fluoride from soils to different parts of tea plants in Anhui province[J]. Environmental Chemistry, 2011, 30(8): 1462-1467. [6] Shahab S, Mustafa G, Khan I, et al.Effects of fluoride ion toxicity on animals, plants, and soil health: a review[J]. Fluoride, 2017, 50(4): 393-408. [7] Ni D J, Li C L.Effect of fluoride on the amino acid composition of tea leaves[J]. Research Report Fluoride, 2016, 49: 274-278. [8] Yang X, Yu Z, Zhang B, et al.Effect of fluoride on the biosynthesis of catechins in tea [ [9] 高绪评, 王萍. 饮茶摄氟量的探讨[J]. 植物资源与环境, 1998 (3): 54-58. Gao X P, Wang P.Researches of the uptaken fluorine amount from drinking tea[J]. Journal of Plant Resources and Environment, 1998 (3): 54-58. [10] Baunthiyal M, Ranghar S.Physiological and biochemical responses of plants under fluoride stress: an overview[J]. Fluoride 2014, 47(4): 287-293. [11] 王玉梅, 柴如山, 郜红建. 茶树根系跨膜主动吸收氟的表观特征[J]. 农业环境科学学报, 2016, 35(8): 1473-1479. Wang Y M, Chai R S, Gao H J.Apparent characteristics of active transmembrane uptake of fluoride by tea plant roots[J]. Journal of Agro-Environment Science, 2016, 35(8): 1473-1479. [12] 张磊, 阮建云. 茶树氟吸收动力学参数测定方法的研究[J]. 茶叶科学, 2008(3): 195-200. Zhang L, Ruan J Y.Comparison on research methods for fluoride uptake kinetics of tea plant[J]. Journal of Tea Science, 2008(3): 195-200. [13] 张磊. 茶树氟吸收动力学特性的研究[D]. 杭州: 中国农业科学院, 2008. Zhang L.Research for fluoride uptake kinetics characteristic of tea plant [D]. Hangzhou: Chinese Academy of Agricultural Sciences, 2008. [14] 彭传燚, 陈静, 蔡荟梅, 等. 茶树对氟的吸收动力学特性研究[J]. 热带作物学报, 2013, 34(3): 495-500. Peng C Y, Chen J, Cai H M, et al.The kinetic characteristics of solution fluoride uptake by tea plant[J]. Chinese Journal of Tropical Crops, 2013, 34(3): 495-500. [15] 秦樊鑫, 吴迪, 黄先飞, 等. 高氟病区茶园土壤氟形态及其分布特征[J]. 中国环境科学, 2014, 34(11): 2859-2865. Qin F X, Wu D, Huang X F, et al.Distribution characteristics and speciation of fluorine in tea Garden soils in the high fluoride area[J]. China Environmental Science, 2014, 34(11): 2859-2865. [16] 李张伟. 粤东凤凰山茶区土壤氟化学形态特征及其影响因素[J]. 环境化学, 2011, 30(8): 1468-1473. Li Z W.Chemical forms of fluoride in soils forms 12 tea gardens of Fenghuang mountaing, East of Guangdong Province[J]. Environmental Chemistry, 2011, 30(8): 1462-1467. [17] 谢忠雷, 陈卓, 孙文田, 等. 不同茶园茶叶氟含量及土壤氟的形态分布[J]. 吉林大学学报(地球科学版), 2008, 38(2): 293-298. Xie Z L, Chen Z, Sun W T, et al.Content of fluoride in tea leaves and distribution of fluoride in soils from different tea gardens[J]. Journal of Jilin University (Earth Science Edition), 2008, 38(2): 293-298. [18] 王玉梅. 茶树根系跨膜吸收氟的微观机制和转录组学特征[D]. 合肥: 安徽农业大学, 2017. Wang Y M.Microscopic mechanisms transcriptome characteristics of transmembrane absorption of fluoride by tea plant roots [D]. Hefei: Anhui Agricultural University, 2017. [19] Li Q S, Lin X M, Qiao R Y, et al.Effect of fluoride treatment on gene expression in tea plant ( [20] Mcilwain B C, Ruprecht M T, Stockbridge R B.Membrane exporters of fluoride ion[J]. Annual Review of Biochemistry, 2021, 90(1): 559-579. [21] Xing A Q, Ma Y C, Wu Z C, et al.Genome-wide identification and expression analysis of the CLC superfamily genes in tea plants ( [22] Zhu J J, Xing A Q, Wu Z C, et al.CsFEX, a fluoride export protein gene from [23] 广敏. ABC转运蛋白介导茶树根系跨膜吸收转运氟的分子机制研究[D]. 合肥: 安徽农业大学, 2020. Guang M.Molecular mechanisims of ABC transporter mediated transmembrane absorption and transport of of fluoride by tea plant roots [D]. Hefei: Anhui Agricultural University, 2020. [24] Ruan J Y, Ma L F, Shi Y Z, et al.The impact of pH and calcium on the uptake of fluoride by tea plants ( [25] Yang Y, Liu Y, Huang C F, et al.Aluminium alleviates fluoride toxicity in tea ( [26] Morita A, Horie H, Fujii Y, et al.Chemical forms of aluminum in xylem sap of tea plants ( [27] Nagata T, Hayatsu M.Aluminium kinetics in the tea plant using 27Al and 19F NMR[J]. Phytochemistry, 1993, 32(4): 771-775. [28] Cai H M, Peng C Y, Chen J, et al.X-ray photoelectron spectroscopy surface analysis of fluoride stress in tea ( [29] Luo J L, Ni D J, He C, et al.Influence of exogenous calcium on the physiological, biochemical, phytochemical and ionic homeostasis of tea plants ( [30] Zhang X C, Gao H J, Yang T Y, et al.Anion channel inhibitor NNPB-inhibited fluoride accumulation in tea plant ( [31] Zhang X C, Gao J H, Zhang Z Z, et al.Influences of different ion channel inhibitors on the absorption of fluoride in tea plants ( [32] Zhang X C, Gao H J, Yang T Y, et al.Al3+-promoted fluoride accumulation in tea plants ( [33] Zhang L, Li Q, Ma L F, et al.Characterization of fluoride uptake by roots of tea plants ( [34] Pottosin I, Velarde-Buendía A M, Bose J, et al. Polyamines cause plasma membrane depolarization, activate Ca2+-, and modulate H+-ATPase pump activity in pea roots[J]. Journal of Experimental Botany, 2014, 65(9): 2463-2472. [35] 唐茜, 赵先明, 杜晓, 等. 氟对茶树生长,叶片生理生化指标与茶叶品质的影响[J]. 植物营养与肥料学报, 2011, 17(1): 186-194. Tang Q, Zhao X M, Du X, et al.Effects of fluorine stress on growth, physiological-biochemical characteristics and quality of tea leaves[J]. Plant Nutrition and Fertilizer Science, 2011, 17(1): 186-194. [36] 李丽霞, 杜晓, 何春雷. 水培茶苗对氟的吸收累积特性[J]. 四川农业大学学报, 2008, 26(1): 62-66, 78. Li L X, Du X, He C L.Absorption and accumulation characteristics of fluorine in nutrient liquid cultured tea plant[J]. Journal of Sichuan Agricultural University, 2008, 26(1): 62-66, 78. [37] Chen Y Z, Wang S L, Nan Z R, et al.Effect of fluoride and cadmium stress on the uptake and translocation of fluoride and cadmium and other mineral nutrition elements in radish in single element or co-taminated sierozem[J]. J Environmental Experimental Botany, 2017, 134: 54-61. [38] Jha S K, Nayak A K, Sharma Y K.Response of spinach ( [39] Takmaz-Nisaneiouglu S, Davison A W.Effects of aluminium on fluoride uptake by plants[J]. New Phytologist, 1988, 109: 149-155. [40] 周丽丽, 高必达, 宋奎. 不同植物对KF的剂量反应及其伤害阈值和致死浓度[J]. 中国农学通报, 2015, 31(14): 164-170. Zhou L L, Gao B D, Song K.Dose-response of different plants on potassium fluoride and acute injury thresholds and lethal concentrations[J]. Chinese Agricultural Science Bulletin, 2015, 31(14): 164-170. [41] 高慧敏. 茶多糖对氟离子的吸附特性研究[D]. 武汉: 华中农业大学, 2019. Gao H M.Study on the absorption characteristics of tea polysaccharides on fluoride [D]. Wuhan: Huazhong Agricultural University, 2019. [42] 刘思怡, 朱晓静, 房峰祥, 等. 茶树叶片氟亚细胞分布及其与细胞壁结合特性的研究[J]. 茶叶科学, 2018, 38(3): 305-312. Liu S Y, Zhu X J, Fang F X, et al.Fluorine subcellular distribution and its combining characteristics with cell wall in tea leaves ( [43] Gao H J, Zhao Q, Zhang X C, et al.Localization of fluoride and aluminum in subcellular fractions of tea leaves and roots[J]. Journal of Agricultural and Food Chemistry, 2014, 62(10): 2313-2319. [44] Luo J L, Ni D J, Li C L, et al.The relationship between fluoride accumulation in tea plant and changes in leaf cell wall structure and composition under different fluoride conditions[J]. Environmental Pollution, 2021, 270: 116283. [45] Luo J L, Hu K, Qu F F, et al.Metabolomics analysis reveals major differential metabolites and metabolic alterations in tea plant leaves( [46] 春晓亚. 氟在茶树新梢的分布特性及与多糖的结合方式初探[D]. 武汉: 华中农业大学, 2011. Chun X Y.Study on distribution of fluorine in tea shoots and the way of combination with polysaccharides [D]. Wuhan: Huazhong Agricultural University, 2011. [47] 钟秋生, 林郑和, 郝志龙, 等. 氟铝互作对茶树叶片叶绿素荧光特性的影响[J]. 茶叶科学, 2019, 39(5): 537-546. Zhong Q S, Lin Z H, Hao Z L, et al.Effect of fluoride and aluminum interaction on the chlorophyll fluorescence characteristics of tea leaves[J]. Journal of Tea Science, 2019, 39(5): 537-546. [48] Peng C Y, Xu X F, Zhu H Y, et al.Metabolics and ionomics responses of tea leaves ( [49] Li C L, Ni D J.Effect of fluoride on chemical constituents of tea leaves[J]. Fluoride, 2009, 42(3): 195-202. [50] 卢莉, 刘金仙, 程曦, 等. 氟铝交互处理对茶叶主要化学成分的影响[J]. 热带作物学报, 2017, 38(10): 1956-1962. Lu L, Liu J X, Cheng X, et al.Effect of Al and F interaction on the main chemical components in tea leaves[J]. Chinese Journal of Tropical Crops, 2017, 38(10): 1956-1962. [51] 王小平, 刘鹏, 罗虹, 等. 铝氟交互处理对茶树生理特性的影响[J]. 园艺学报, 2009, 36(9): 1359-1364. Wang X P, Liu P, Luo H, et al.Effect of Al and F interaction on physiological characteristics of tea plant[J]. Acta Horticulture Sinica, 2009, 36(9): 1359-1364. [52] 马士成. 铝对茶树氟吸收、累积、分布特性的影响及其机理研究[D]. 杭州: 浙江大学, 2012. Ma S C.Effect of aluminum on uptake, distribution and accumulation of fluorine in tea plants and its mechanism [D]. Hangzhou: Zhejiang University, 2012. [53] 王丽霞. 茶树对氟的富集及其生理响应机制研究[D]. 杨凌: 西北农林科技大学, 2014. Wang L X.Fluoride accumulation in tea plant and its physiological response mechanism [D]. Yangling: Northwest A&F University, 2014. [54] 杨贤强, 王岳飞, 陈留记, 等. 茶多酚化学[M]. 上海: 上海科学技术出版社, 2003. Yang X Q, Wang Y F, Chen L J, et al.Tea polyphenol chemistry [M]. Shanghai: Shanghai Science and Technology Press, 2003. [55] 勾晓华, 王勋陵, 陈发虎. 氟化氢熏气和喷施防护剂对小麦应激乙烯产生的影响[J]. 应用与环境生物学报, 2000, 6(2): 117-120. Gou X H, Wang X L, Chen F H.Effect of HF fumigation and spraying protective agents on stress ethylene production in wheat[J]. Chinses Journal Applied and Environmental Biology, 2000, 6(2): 117-120. [56] 孟范平, 李桂芳, 吴方正. 氟害大豆超氧化物歧化酶活性与叶绿素含量及叶片脱落的关系[J]. 生态与农村环境学报, 2002, 18(2): 34-38. Meng F P, Li G F, Wu F Z.Relationship between SOD activity and chlorophyll content and abnormal defoliation of soybean ( [57] Li C, Zheng Y, Zhou J, et al.Changes of leaf antioxidant system, photosynthesis and ultrastructure in tea plant under the stress of fluorine[J]. Biologia Plantarum, 2011, 55(3): 563-566. [58] 董阳阳. 氟处理对茶树叶片光合系统、活性氧代谢及超微结构的影响[D]. 合肥: 安徽农业大学, 2015. Dong Y Y.Effect of F supply on photosynthesis, reactive oxygen metabolism and ultra-structure of tea plant ( [59] 李春雷. 氟对茶树抗坏血酸-谷胱甘肽循环系统的影响[J]. 江苏农业学报, 2016, 32(5): 1018-1022. Li C L.ASA-GSH cycle in tea plant exposed to fluoride application[J]. Jiangsu Journal of Agricultural Science, 2016, 32(5): 1018-1022. [60] 黄鑫, 宋晓维, 陈玉琼. 茶树吸收富集氟的机制研究进展[J]. 茶叶科学, 2016, 36(6): 551-556. Huang X, Song X W, Chen Y Q.Advances in fluorine absorption and accumulation mechanisms in tea plant[J]. Journal of Tea Science, 2016, 36(6): 551-556. [61] 李春雷. 氟对茶树幼苗生理生化的影响及其作用机制研究[D]. 武汉: 华中农业大学, 2011. Li C L.Study on the Effect and mechanism of fluoride in the physiology and biochemistry of tea seedlings [D]. Wuhan: Huazhong Agricultural University, 2011. [62] 孟范平, 吴方正. HF对梅树超氧化物歧化酶和纤维素酶活性的影响[J]. 生态学杂志, 1997, 16(5): 28-31. Meng F C, Wu F Z.Effect of HF on the activities of superoxide dismutase and cellolase in plum ( [63] 徐丽珊. 大气氟化物对植物影响的研究进展[J]. 浙江师范大学学报, 2004, 27(1): 66-71. Xu L S.Effects of atmospheric fluoride pollution on plant[J]. Journal of Zhejiang Normal University (Natural Science Edition), 2004, 27(1): 66-71. [64] Yang P D, Liu Z, Zhao Y, et al.Comparative study of vegetative and reproductive growth of different tea varieties response to different fluoride concentrations stress[J]. Plant Physiology and Biochemistry, 2020, 154: 419-428. [65] 申秀英, 吴方正. 氟化物对桑叶氮代谢某些影响的研究[J]. 农业环境科学学报, 1991, 10(5): 194-197, 211. Shen X Y, Wu F Z.Effect of fluoride on the metabolism of nitrogen in the leaves of mulberry[J]. Agro-environmental Protection, 1991, 10(5): 194-197, 211. [66] Yu M H, Miller G W. Effect of fluoride on the respiration of leaves from higher plants [J]. Plant Cell Physiology1967(3): 483-493. [67] Miller J E, Miller G W.Effects of fluoride on mitochondrial activity in higher plants[J]. Physiologia Plantarum, 2010, 32(2): 115-121. [68] 杨晓, 张月华, 余志, 等. 氟对茶树生理的影响及茶树耐氟机制研究进展[J]. 华中农业大学学报, 2015, 34(3): 142-146. Yang X, Zhang Y H, Yu Z, et al.Physiological effects of fluoride on tea plant and fluoride-resistant mechanism of tea[J]. Journal of Huazhong Agricultural University, 2015, 34(3): 142-146. [69] Niu H L, Peng C Y, Zhu X D, et al.Positron-emitting tracer imaging of fluoride transport and distribution in tea plant[J]. Journal of the Science of Food and Agriculture, 2020, 100(8): 3554-3559. [70] Wang Y H, Chang P P, Pan J T, et al.Effect of aluminium and fluoride on R2R3-MYB transcription factor characterization and expression in [71] Pan J T, Chang P P, Ye X L, et al.Transcriptome-wide analysis of MADS-box family genes involved in aluminum and fluoride assimilation in [72] Banerjee A, Roychoudhury A.Melatonin application reduces fluoride uptake and toxicity in rice seedlings by altering abscisic acid, gibberellin, auxin and antioxidant homeostasis[J]. Plant Physiology and Biochemistry, 2019, 145: 164-173. [73] Stockbridge R B, Lim H H, Otten R, et al.Fluoride resistance and transport by riboswitch-controlled CLC antiporters[J]. Proceedings of the National Academy of Sciences of the United States of America Elife, 2012, 109(38): 15289-15294. [74] Tausta S L, Berbasova T, Peverelli M, et al.The fluoride transporter Fluoride Exporter (FEX) is the major mechanism of tolerance to fluoride toxicity in plants[J]. Plant Physiology, 2021, 186(2): 1143-1158. [75] 陈瑞鸿, 梁月荣, 陆建良, 等. 茶树对氟富集作用的研究[J]. 茶叶, 2002, 28(4): 187-190. Chen R H, Liang Y R, Lu J L.Studies on fluorine enrichment in tea plant ( [76] 石元值, 王新超, 方丽, 等. 四个茶树品种的氟吸收累积特性比较研究[J]. 植物营养与肥料学报, 2013, 19(2): 396-403. Shi Y Z, Wang X C, Fang L, et al.Characteristics of fluorine absorption and accumulation of four different tea tree varieties[J]. Plant Nutrition and Fertilizer Science, 2013, 19(2): 396-403. [77] 黎南华. 不同生态环境的茶叶氟含量浅析[J]. 福建茶叶, 1994(2): 21-23. Li N H.Analysis on the fluoride content of tea in different ecological environments[J]. Tea in Fujian, 1994(2): 21-23. [78] 包小村. 茶叶最新降氟科技成果[J]. 湖南农业, 2020, 510(6): 17. Bao X C.The latest scientific and technological achievements of tea defluoridation[J]. Hunan Agriculture, 2020, 510(6): 17. [79] 于静怡, 王军, 于晓峰. 基于计算机技术下氟铝交互化学处理对茶叶化学成分的影响分析[J]. 福建茶叶, 2018, 40(4): 10. Yu J Y, Wang J, Yu X F.Analysis of the influence of fluorine-aluminum interactive chemical treatment on the chemical composition of tea based on computer technology[J]. Tea in Fujian, 2018, 40(4): 10. [80] 张永利, 廖万有, 王烨军, 等. 添加含钙化合物对茶园土壤pH及有效氟的影响[J]. 中国农学通报, 2013, 29(1): 132-137. Zhang Y L, Liao W Y, Wang Y J, et al.Influence of addition of calcium compounds on pH and available fluoride content in tea garden soil[J]. Chinese Agricultural Science Bulletin, 2013, 29(1):132-137. [81] 王凌霞, 胡红青, 闵艳林, 等. 茶园土壤水溶性氟含量的模拟调控[J]. 环境科学学报, 2011, 31(7): 1517-1525. Wang L X, Hu H Q, Min Y L, et al.Simulated control of water-soluble fluoride content in tea garden soils[J]. Acta Scientiae Circumstantiae, 2011, 31(7): 1517-1525. [82] Gao H J, Zhang Z Z, Wan X C.Influences of charcoal and bamboo charcoal amendment on soil-fluoride fractions and bioaccumulation of fluoride in tea plants[J]. Environmental Geochemistry and Health, 2012, 34(5): 551-562. [83] Huang C Y, Zhang H, Zeng W H, et al.Enhanced fluoride adsorption of aluminum humate and its resistance on fluoride accumulation in tea leaves[J]. Environmental Technology, 2020,41(3): 329-338. [84] 陈玉琼, 倪德江, 春晓娅, 等. 不同杀青方式对青砖茶原料氟含量的影响[J]. 湖北农业科学, 2011, 50(6): 1193-1195. Chen Y Q, Ni D J, Chun X Y, et al.Effects of different fixation ways on the fluoride contents of Qingzhuan tea material[J]. Hubei Agricultural Sciences, 2011, 50(6): 1193-1195. [85] 春晓亚, 陈玉琼, 倪德江, 等. 水洗对砖茶揉捻叶氟含量及主要品质成分的影响[J]. 湖北农业科学, 2011, 50(12): 2453-2455. Chun X Y, Chen Y Q, Ni D J, et al.Effects of rolling tea leaves with washing water on fluorine and quality components[J]. Hubei Agricultural Sciences, 2011, 50(12): 2453-2455. [86] 李国林, 梅树华, 齐桂年. 采用微生物制剂处理的低氟砖茶生产工艺: CN101427716[P].2009-05-13. Li G L, Mei S H, Qi G N. Production process of low-fluoride brick tea treated with microbial preparation: CN101427716 [P].2009-05-13. [87] 李兰英, 王云, 尧渝, 等. 低氟砖茶加工工艺及品质研究[J]. 中国农学通报, 2017, 33(15): 133-138. Li L Y, Wang Y, Rao Y, et al.Processing technology and quality of low-fluoride brick-tea[J]. Chinese Agricultural Science Bulletin, 2017, 33(15): 133-138. [88] 纪晓明, 李三原, 周兴长. 以拼配技术降低茯砖茶氟含量的生产方法: CN101731379A[P].2010-06-16. Ji X M, Li S Y, Zhou X Z. Production method for reducing fluoride content of Fuzhuan tea by blending technology: CN101731379A [P].2010-06-16. |
[1] | WANG Liubin, HUANG Liyun, TENG Cuiqin, WU Liyun, CHENG Hao, YU Cuiping, WANG Liyuan. Genetic and Phylogenetic Analysis for Germplasm Resources of Camellia sinensis from Wuzhou City [J]. Journal of Tea Science, 2022, 42(5): 601-609. |
[2] | ZHOU Hanchen, YANG Jihong, XU Yujie, WU Qiong, LEI Pandeng. Phylogenetic Analysis of NUDX1 Gene Involved in Geraniol Biosynthesis [J]. Journal of Tea Science, 2022, 42(5): 638-648. |
[3] | WANG Tao, WANG Yiqing, QI Siyu, ZHOU Zhe, CHEN Zhidan, SUN Weijiang. Identification and Transcriptional Regulation of CLH Gene Family and Expression Analysis in Albino Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 331-346. |
[4] | LIU Fuhao, FAN Yangen, WANG Yu, MENG Fanyue, ZHANG Lixia. Screening and Identification of Chaperone CsHIPP26.1 Chelating Ions in Tea Cultivar ‘Huangjinya’ [J]. Journal of Tea Science, 2022, 42(2): 179-186. |
[5] | WANG Pengjie, YANG Jiangfan, ZHANG Xingtan, YE Naixing. Research Advance of Tea Plant Genome and Sequencing Technologies [J]. Journal of Tea Science, 2021, 41(6): 743-752. |
[6] | ZHOU Hanchen, LEI Pandeng. The Functional Identification of Two Alternative Splicing Transcripts of CsNES [J]. Journal of Tea Science, 2021, 41(6): 753-760. |
[7] | YAN Minghui, LIU Ke, WANG Man, LYU Ying, ZHANG Qian. Complete Chloroplast Genome of Camellia sinensis cv. Xinyang 10 and Its Phylogenetic Evolution [J]. Journal of Tea Science, 2021, 41(6): 777-788. |
[8] | SU Dan, ZHANG Haojie, WEN Xiaoju, ZHANG Wei, YU Zhi, NI Dejiang, CHEN Yuqiong. Study on Bioavailability of Fluorine in Different Extracts of A Dark Tea [J]. Journal of Tea Science, 2021, 41(6): 843-853. |
[9] | LIN Xinying, WANG Pengjie, CHEN Xuejin, GUO Yongchun, GU Mengya, ZHENG Yucheng, YE Naixing. Identification of LOX Gene Family in Camellia sinensis and Expression Analysis in the Process of White Tea Withering [J]. Journal of Tea Science, 2021, 41(4): 482-496. |
[10] | WANG Yanding, WANG Huan, LI Nana, WANG Lu, HAO Xinyuan, WANG Yuchun, DING Changqing, YANG Yajun, WANG Xinchao, QIAN Wenjun. Identification and Expression Analysis of Glucose-6-hosphate Dehydrogenase Gene (CsG6PDHs) in Camellia sinensis [J]. Journal of Tea Science, 2021, 41(4): 497-510. |
[11] | CHEN Siwen, KANG Rui, GUO Zhiyuan, ZHOU Qiongqiong, FENG Jiancan. Cloning and Expression Analysis of CsCML16 in Tea Plants (Camellia sinensis) under Low Temperature Stress [J]. Journal of Tea Science, 2021, 41(3): 315-326. |
[12] | ZHAO Yiqing, LIU Zhengjun, ZHANG Tianxin, ZHAO Yanting, XIAO Bin, GAO Yuefang. Cloning of CsCHLI Gene and Its Expression Analysis in Different Albino Tea Cultivars (Camellia sinensis) [J]. Journal of Tea Science, 2021, 41(3): 327-336. |
[13] | GUO Lingling, ZHANG Fen, CHENG Hao, WEI Kang, RUAN Li, WU Liyun, WANG Liyuan. Molecular Cloning and Expression Analysis of CsAAPs Gene Subfamily in Camellia Sinensis [J]. Journal of Tea Science, 2020, 40(4): 454-464. |
[14] | WANG Minghan, DING Ding, ZHANG Chenyu, GAO Xizhi, CHEN Jianjiao, TANG Han, SHEN Chengwen. Effects of Drought Stress on Growth and Chlorophyll Fluorescence Characteristics of Tea Seedlings [J]. Journal of Tea Science, 2020, 40(4): 478-491. |
[15] | GUO Yongchun, CHEN Jinfa, ZHAO Feng, WANG Shuyan, WANG Pengjie, ZHOU Peng, OUYANG Liqun, JIN Shan, YE Naixing. Study on the Distribution of Glyphosate and Its Metabolite Aminomethylphosphonic Acid in Camellia Sinensis [J]. Journal of Tea Science, 2020, 40(4): 510-518. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|