Journal of Tea Science ›› 2022, Vol. 42 ›› Issue (3): 316-330.doi: 10.13305/j.cnki.jts.20220416.001
• Review • Previous Articles Next Articles
LIU Qi1,2, OUYANG Jian1,2, LIU Changwei1,2, CHEN Hongyu1,2, LI Juan1,2,3, XIONG Ligui1,2,3, LIU Zhonghua1,2,3,*, HUANG Jian'an1,2,3,*
Received:
2021-11-23
Revised:
2022-01-04
Online:
2022-06-15
Published:
2022-06-17
CLC Number:
LIU Qi, OUYANG Jian, LIU Changwei, CHEN Hongyu, LI Juan, XIONG Ligui, LIU Zhonghua, HUANG Jian'an. Research Progress of Tea Quality Evaluation Technology[J]. Journal of Tea Science, 2022, 42(3): 316-330.
[1] 张颖彬, 刘栩, 鲁成银. 中国茶叶感官审评术语的形成与发展现状[J]. 茶叶科学, 2019, 39(2): 123-130. Zhang Y B, Liu X, Lu C Y.Formation and development of Chinese tea sensory terminology[J]. Journal of Tea Science, 2019, 39(2): 123-130. [2] 张颖彬, 刘栩, 鲁成银. 中国茶叶感官审评术语基元语素研究与风味轮构建[J]. 茶叶科学, 2019, 39(4): 474-483. Zhang Y B, Liu X, Lu C Y.Study on primitive morpheme in sensory terminology and flavor wheel construction of Chinese tea[J]. Journal of Tea Science, 2019, 39(4): 474-483. [3] Li H H, Luo L Y, Wang J, et al.Lexicon development and quantitative descriptive analysis of Hunan fuzhuan brick tea infusion[J]. Food Research International, 2019, 120: 275-284. [4] 戴前颖, 叶颖君, 安琪, 等. 黄大茶感官特征定量描述与风味轮构建[J]. 茶叶科学, 2021, 41(4): 535-544. Dai Q Y, Ye Y J, An Q, et al.Sensory characteristics of yellow large leaf tea by quantitative descriptive analysis and construction of flavor wheel[J]. Journal of Tea Science, 2021, 41(4): 535-544. [5] 安会敏, 熊一帆, 张杨波, 等. 临沧工夫红茶季节判定模型及风味轮的构建[J]. 食品工业科技, 2019, 40(23): 199-206. An H M, Xiong Y F, Zhang Y B, et al.Construction of seasonal decision model and flavor wheel for Lincang gongfu black tea[J]. Science and Technology of Food Industry, 2019, 40(23): 199-206. [6] 高涛, 罗黄洋, 吴韧, 等. 主客观组合权重法在食品感官评价中的应用[J]. 食品工业科技, 2021, 42(18): 300-307. Gao T, Luo H Y, Wu R, et al.Application of subjective and objective combination weighting method in food sensory evaluation[J]. Science and Technology of Food Industry, 2021, 42(18): 300-307. [7] Galmarini M V.The role of sensory science in the evaluation of food pairing[J]. Current Opinion in Food Science, 2020, 33: 149-155. [8] Li H, Luo L, Ma M, et al.Characterization of volatile compounds and sensory analysis of jasmine scented black tea produced by different scenting processes[J]. Journal of Food Science, 2018, 83(11): 2718-2732. [9] Ni H, Jiang Q X, Lin Q, et al.Enzymatic hydrolysis and auto-isomerization during [10] Qi D D, Miao A Q, Cao J X, et al.Study on the effects of rapid aging technology on the aroma quality of white tea using GC-MS combined with chemometrics: in comparison with natural aged and fresh white tea[J]. Food Chemistry, 2018, 265: 189-199. [11] Wang Y, Yang X, Li K, et al.Simultaneous determination of theanine, gallic acid, purine alkaloids, catechins, and theaflavins in black tea using HPLC[J]. International Journal of Food Science & Technology, 2010, 45(6): 1263-1269. [12] Pan H B, Zhang D, Li B, et al.A rapid UPLC method for simultaneous analysis of caffeine and 13 index polyphenols in black tea[J]. Journal of Chromatographic Science, 2017, 55(5): 495-496. [13] Tan J, Dai W, Lu M, et al.Study of the dynamic changes in the non-volatile chemical constituents of black tea during fermentation processing by a non-targeted metabolomics approach[J]. Food Research International, 2016, 79: 106-113. [14] Yun J, Cui C J, Zhang S H, et al.Use of headspace GC/MS combined with chemometric analysis to identify the geographic origins of black tea[J]. Food Chemistry, 2021, 360: 130033. doi: 10.1016/j.foodchem.2021.130033. [15] Rubel Mozumder N H M, Lee Y R, Hwang K H, et al. Characterization of tea leaf metabolites dependent on tea ( [16] Wang W N, Zhang L, Wang S, et al.8- [17] Dai W D, Tan J F, Lu M L, et al.Metabolomics investigation reveals that 8- [18] 王家勤, 姚月凤, 袁海波, 等. 基于色差系统的工夫红茶茶汤亮度的量化评价方法研究[J]. 茶叶科学, 2020, 40(2): 259-268. Wang J Q, Yao Y F, Yuan H B, et al.A quantitative method for brightness evaluation of Congou black tea infusions based on color difference analysis[J]. Journal of Tea Science, 2020, 40(2): 259-268. [19] Huang D Y, Qiu Q L, Wang Y M, et al.Rapid identification of different grades of Huangshan Maofeng tea using ultraviolet spectrum and color difference[J]. Molecules, 2020, 25(20): 4665. doi: 10.3390/molecules25204665. [20] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003. Wan X C.Tea Biochemistry [M]. 3rd ed. Beijing: China Agriculture Press, 2003. [21] 张雪, 张志强. 学科交叉研究系统综述[J]. 图书情报工作, 2020, 64(14): 112-125. Zhang X, Zhang Z Q.Review on interdisciplinary research[J]. Library and Information Service, 2020, 64(14): 112-125. [22] 宛晓春, 李大祥, 张正竹, 等. 茶叶生物化学研究进展[J]. 茶叶科学, 2015, 35(1): 1-10. Wan X C, Li D X, Zhang Z Z, et al.Research advance on tea biochemistry[J]. Journal of Tea Science, 2015, 35(1): 1-10. [23] Huang T S.Computer vision: evolution and promise[J]. 19th CERN School of Computing, 1996: 21-25. [24] Chen Q, Zhao J, Cai J.Identification of tea varieties using computer vision[J]. Transactions of the ASABE, 2008, 51(2): 623-628. [25] Chen Y T, Chen S F.Localizing plucking points of tea leaves using deep convolutional neural networks[J]. Computers and Electronics in Agriculture, 2020, 171: 105298. doi: 10.1016/j.compag.2020.105298. [26] Yang H L, Chen L, Ma Z B, et al.Computer vision-based high-quality tea automatic plucking robot using Delta parallel manipulator[J]. Computers and Electronics in Agriculture, 2021, 181(7): 105946. doi: 10.1016/j.compag.2020.105946. [27] Gill G S, Kumar A, Agarwal R.Nondestructive grading of black tea based on physical parameters by texture analysis[J]. Biosystems Engineering, 2013, 116(2): 198-204. [28] Zhu H K, Ye Y, He H F, et al.Evaluation of green tea sensory quality via process characteristics and image information[J]. Food and Bioproducts Processing, 2017, 102: 116-122. [29] 伍洵, 刘飞, 陈之威, 等. 基于计算机视觉的绿茶炒干中在制品理化变化研究[J]. 茶叶科学, 2020, 40(2): 194-204. Wu X, Liu F, Chen Z W, et al.Study on the changes of physical and chemical components during the frying process of green tea by computer vision[J]. Journal of Tea Science, 2020, 40(2): 194-204. [30] Liu P, Wu R M, Yang P X, et al.Study of sensory quality evaluation of tea using computer vision technology and forest random method[J]. Spectroscopy and Spectral Analysis, 2019, 39(1): 193-198. [31] Zou Y, Ma W J, Tang Q, et al.A high-precision method evaluating color quality of Sichuan Dark Tea based on colorimeter combined with multi-layer perceptron[J]. Journal of Food Process Engineering, 2020, 43(8): e13444. doi: 10.1111/jfpe.13444. [32] Bakhshipour A, Sanaeifar A, Payman S H, et al.Evaluation of data mining strategies for classification of black tea based on image-based features[J]. Food Analytical Methods, 2018, 11(4): 1041-1050. [33] Bakhshipour A, Zareiforoush H, Bagheri I.Application of decision trees and fuzzy inference system for quality classification and modeling of black and green tea based on visual features[J]. Journal of Food Measurement and Characterization, 2020, 14(3): 1402-1416. [34] Wu X Y, Yang J Q, Wang S H.Tea category identification based on optimal wavelet entropy and weighted k-Nearest Neighbors algorithm[J]. Multimedia Tools and Applications, 2018, 77(3): 3745-3759. [35] Zhang Y D, Muhammad K, Tang C.Twelve-layer deep convolutional neural network with stochastic pooling for tea category classification on GPU platform[J]. Multimedia Tools and Applications, 2018, 77(17): 22821-22839. [36] Chen J, Liu Q, Gao L W.Visual tea leaf disease recognition using a convolutional neural network model[J]. Symmetry, 2019, 11(3): 343. doi: 10.3390/sym11030343. [37] Chen J F, He Q.Tea disease spot recognition based on image feature points extraction and matching[J]. Global NEST Journal, 2020, 22(4): 492-501. [38] Yang N, Yuan M, Wang P, et al.Tea diseases detection based on fast infrared thermal image processing technology[J]. Journal of the Science of Food and Agriculture, 2019, 99(7): 3459-3466. [39] 吴正敏, 曹成茂, 谢承健, 等. 基于图像处理技术和神经网络实现机采茶分级[J]. 茶叶科学, 2017, 37(2): 182-190. Wu Z M, Cao C M, Xie C J, et al.Grading of machine picked tea based on image processing technology and neural network[J]. Journal of Tea Science, 2017, 37(2): 182-190. [40] Zhang L, Zhang H, Chen Y, et al.Real-time monitoring of optimum timing for harvesting fresh tea leaves based on machine vision[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(1): 6-9. [41] 张怡, 赵珠蒙, 王校常, 等. 基于ResNet卷积神经网络的绿茶种类识别模型构建[J]. 茶叶科学, 2021, 41(2): 261-271. Zhang Y, Zhao Z M, Wang X C, et al.Construction of green tea recognition model based on ResNet convolutional neural network[J]. Journal of Tea Science, 2021, 41(2): 261-271. [42] Li L Q, Wang Y J, Jin S S, et al.Evaluation of black tea by using smartphone imaging coupled with micro-near-infrared spectrometer[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 246: 118991. doi: 10.1016/j.saa.2020.118991. [43] Wang S H, Phillips P, Liu A J, et al.Tea category identification using computer vision and generalized eigenvalue proximal SVM[J]. Fundamenta Informaticae, 2017, 151(1/4): 325-339. [44] Liu C L, Lu W Y, Gao B Y, et al.Rapid identification of chrysanthemum teas by computer vision and deep learning[J]. Food Science & Nutrition, 2020, 8(4): 1968-1977. [45] Xu M, Wang J, Jia P F, et al.Identification of Longjing teas with different geographic origins based on e-nose and computer vision system combined with data fusion strategies[J]. Transactions of the ASABE, 2021, 64(1): 327-340. [46] Lin X, Sun D W.Recent developments in vibrational spectroscopic techniques for tea quality and safety analyses[J]. Trends in Food Science & Technology, 2020, 104: 163-176. [47] 任广鑫, 金珊珊, 李露青, 等. 近红外光谱技术在茶叶品控与装备创制领域的研究进展[J]. 茶叶科学, 2020, 40(6): 707-714. Ren G X, Jin S S, Li L Q, et al.Research progress of near-infrared spectroscopy in tea quality control and equipment development[J]. Journal of Tea Science, 2020, 40(6): 707-714. [48] Huang Y F, Dong W T, Sanaeifar A, et al.Development of simple identification models for four main catechins and caffeine in fresh green tea leaf based on visible and near-infrared spectroscopy[J]. Computers and Electronics in Agriculture, 2020, 173: 105388. doi: 10.1016/j.compag.2020.105388. [49] Hazarika A K, Chanda S, Sabhapondit S, et al.Quality assessment of fresh tea leaves by estimating total polyphenols using near infrared spectroscopy[J]. Journal of Food Science and Technology, 2018, 55(12): 4867-4876. [50] Sanaeifar A, Huang X, Chen M, et al.Nondestructive monitoring of polyphenols and caffeine during green tea processing using Vis-NIR spectroscopy[J]. Food Science & Nutrition, 2020, 8(11): 5860-5874. [51] Chen Q S, Chen M, Liu Y, et al.Application of FT-NIR spectroscopy for simultaneous estimation of taste quality and taste-related compounds content of black tea[J]. Journal of Food Science & Technology, 2018, 55(10): 4363-4368. [52] Chanda S, Hazarika A K, Choudhury N, et al.Support vector machine regression on selected wavelength regions for quantitative analysis of caffeine in tea leaves by near infrared spectroscopy[J]. Journal of Chemometrics, 2019, 33(10): e3172. doi: 10.1002/cem.3172. [53] 卢莉, 程曦, 张渤, 等. 小种红茶茶多酚和咖啡碱近红外定量分析模型的建立[J]. 茶叶科学, 2020, 40(5): 689-695. Lu L, Cheng X, Zhang B, et al.Establishment of predictive model for quantitative analysis of tea polyphenols and caffeine of souchong by near infrared spectroscopy[J]. Journal of Tea Science, 2020, 40(5): 689-695. [54] Zareef M, Chen Q, Ouyang Q, et al.Prediction of amino acids, caffeine, theaflavins and water extract in black tea using FT-NIR spectroscopy coupled chemometrics algorithms[J]. Analytical Methods, 2018, 10(25): 3023-3031. [55] Lee M S, Hwang Y S, Lee J, et al.The characterization of caffeine and nine individual catechins in the leaves of green tea ( [56] Guo Z M, Barimah A O, Shujat A, et al.Simultaneous quantification of active constituents and antioxidant capability of green tea using NIR spectroscopy coupled with swarm intelligence algorithm[J]. LWT, 2020, 129: 109510. doi: 10.1016/j.lwt.2020.109510. [57] Liu Z, Xie H L, Chen L, et al.An improved weighted partial least squares method coupled with near infrared spectroscopy for rapid determination of multiple components and anti-oxidant activity of pu-erh tea[J]. Molecules, 2018, 23(5): 1058. doi: 10.3390/molecules23051058. [58] Li X L, Jin J J, Sun C J, et al.Simultaneous determination of six main types of lipid-soluble pigments in green tea by visible and near-infrared spectroscopy[J]. Food Chemistry, 2019, 270: 236-242. [59] Wang J H, Wang Y F, Cheng J J, et al.Enhanced cross-category models for predicting the total polyphenols, caffeine and free amino acids contents in Chinese tea using NIR spectroscopy[J]. LWT, 2018, 96: 90-97. [60] Huang Z X, Sanaeifar A, Tian Y, et al.Improved generalization of spectral models associated with Vis-NIR spectroscopy for determining the moisture content of different tea leaves[J]. Journal of Food Engineering, 2021, 293: 110374. doi: 10.1016/j.jfoodeng.2020.110374. [61] Liu P, Wen Y P, Huang J S, et al.A novel strategy of near-infrared spectroscopy dimensionality reduction for discrimination of grades, varieties and origins of green tea[J]. Vibrational Spectroscopy, 2019, 105: 102984. doi: 10.1016/j.vibspec.2019.102984. [62] Ren G X, Wang Y J, Ning J M, et al.Highly identification of keemun black tea rank based on cognitive spectroscopy: Near infrared spectroscopy combined with feature variable selection[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 230: 118079. doi: 10.1016/j.saa.2020.118079. [63] Firmani P, Luca S D, Bucci R, et al.Near infrared (NIR) spectroscopy-based classification for the authentication of Darjeeling black tea[J]. Food Control, 2019, 100: 292-299. [64] Meng W, Xu X, Cheng K K, et al.Geographical origin discrimination of oolong tea (Tieguanyin, [65] Guo Z M, Barimah A O, Yin L M, et al.Intelligent evaluation of taste constituents and polyphenols-to-amino acids ratio in matcha tea powder using near infrared spectroscopy[J]. Food Chemistry, 2021, 353: 129372. doi: 10.1016/j.foodchem.2021.129372. [66] Ning J M, Sun J J, Li S H, et al.Classification of five Chinese tea categories with different fermentation degrees using visible and near-infrared hyperspectral imaging[J]. International Journal of Food Properties, 2017, 20(s2): 1515-1522. [67] Yan L, Pang L, Wang H, et al.Recognition of different Longjing fresh tea varieties using hyperspectral imaging technology and chemometrics[J]. Journal of Food Process Engineering, 2020, 43(4): e13378. doi: 10.1111/jfpe.13378. [68] Sun J, Zhou X, Hu Y G, et al.Visualizing distribution of moisture content in tea leaves using optimization algorithms and NIR hyperspectral imaging[J]. Computers and Electronics in Agriculture, 2019, 160: 153-159. [69] Wang Y J, Liu Y, Chen Y Y, et al.Spatial distribution of total polyphenols in multi-type of tea using near-infrared hyperspectral imaging[J]. LWT, 2021, 148: 111737. doi: 10.1016/j.lwt.2021.111737. [70] 徐敏. 基于电子鼻、电子舌和电子眼的多源信息融合技术对龙井茶品质的检测[D]. 杭州: 浙江大学, 2020. Xu M.Quality detection of Longjing tea based on the multi-source information fusion of E-nose, E-tongue and E-eye [D]. Hangzhou: Zhejiang University, 2020. [71] Jia W S, Liang G, Jiang Z J, et al.Advances in electronic nose development for application to agricultural products[J]. Food Analytical Methods, 2019, 12(10): 2226-2240. [72] Xu M, Wang J, Gu S.Rapid identification of tea quality by E-nose and computer vision combining with a synergetic data fusion strategy[J]. Journal of Food Engineering, 2019, 241: 10-17. [73] Hidayat S N, Triyana K, Fauzan I, et al.The electronic nose coupled with chemometric tools for discriminating the quality of black tea samples in situ[J]. Chemosensors, 2019, 7(3): 29. doi: 10.3390/chemosensors7030029. [74] Liu H X, Yu D B, Gu Y.Classification and evaluation of quality grades of organic green teas using an electronic nose based on machine learning algorithms[J]. IEEE Access, 2019, 7: 172965-172973. [75] Yuan H B, Chen X Q, Shao Y D, et al.Quality evaluation of green and dark tea grade using electronic nose and multivariate statistical analysis[J]. Journal of Food Science, 2019, 84(12): 3411-3417. [76] Wang S Y, Zhao F, Wu W X, et al.Comparison of volatiles in different jasmine tea grade samples using electronic nose and automatic thermal desorption-gas chromatography-mass spectrometry followed by multivariate statistical analysis[J]. Molecules, 2020, 25(2): 380. doi: 10.3390/molecules25020380. [77] 王淑燕, 赵峰, 饶耿慧, 等. 基于电子鼻和ATD-GC-MS技术分析茉莉花茶香气成分的产地差异[J]. 食品工业科技, 2021, 42(15): 234-239. Wang S Y, Zhao F, Rao G H, et al.Origin difference analysis of aroma components in jasmine tea based on electronic nose and ATD-GC-MS[J]. Science and Technology of Food Industry, 2021, 42(15): 234-239. [78] Zhu J C, Chen F, Wang L Y, et al.Evaluation of the synergism among volatile compounds in Oolong tea infusion by odour threshold with sensory analysis and E-nose[J]. Food Chemistry, 2017, 221: 1484-1490. [79] 王宝怡, 王培强, 李晓晗, 等. 基于电子鼻技术对不同季节山东绿茶香气的分析[J]. 现代食品科技, 2020, 36(10): 284-289, 259. Wang B Y, Wang P Q, Li X H, et al.Analysis of aroma of Shandong green tea in different seasons based on electronic nose technology[J]. Modern Food Science & Technology, 2020, 36(10): 284-289, 259. [80] 王佳音, 王凤玲, 王福东, 等. 电子鼻对不同种类抹茶香气成分的辨别与分析[J]. 食品与发酵工业, 2019, 45(19): 270-276. Wang J Y, Wang F L, Wang F D, et al.Identification and analysis of the aroma components of different species of Matcha by electronic nose[J]. Food And Fermentation Industries, 2019, 45(19): 270-276. [81] 孙玉冰. 基于电子鼻技术的茶树虫害信息检测[D]. 杭州: 浙江大学, 2018. Sun Y B.Study of pest information for tea plant based on electroinc nose [D]. Hangzhou: Zhejiang University, 2018. [82] Sun Y, Wang J, Cheng S, et al.Detection of pest species with different ratios in tea plant based on electronic nose[J]. Annals of Applied Biology, 2019, 174(2): 209-218. [83] Sun Y, Wang J, Sun L, et al.Evaluation of E-nose data analyses for discrimination of tea plants with different damage types[J]. Journal of Plant Diseases and Protection, 2019, 126(1): 29-38. [84] Sun Y, Wang J, Cheng S.Discrimination among tea plants either with different invasive severities or different invasive times using MOS electronic nose combined with a new feature extraction method[J]. Computers and Electronics in Agriculture, 2017, 143: 293-301. [85] Wang X R, Gu Y, Liu H X.A transfer learning method for the protection of geographical indication in china using an electronic nose for the identification of Xihu Longjing tea[J]. IEEE Sensors Journal, 2021, 21(6): 8065-8077. [86] Loutfi A, Coradeschi S, Mani G K, et al.Electronic noses for food quality: a review[J]. Journal of Food Engineering, 2015, 144: 103-111. [87] Liu T, Chen Y B, Li D Q, et al.Electronic tongue recognition with feature specificity enhancement[J]. Sensors, 2020, 20(3): 772. doi: 10.3390/s20030772. [88] Ouyang Q, Yang Y C, Wu J Z, et al.Measurement of total free amino acids content in black tea using electronic tongue technology coupled with chemometrics[J]. LWT, 2020, 118: 108768. doi: 10.1016/j.lwt.2019.108768. [89] Chen X J, Xu Y L, Meng L W, et al.Non-parametric partial least squares: discriminant analysis model based on sum of ranking difference algorithm for tea grade identification using electronic tongue data[J]. Sensors and Actuators B: Chemical, 2020, 311: 127924. doi: 10.1016/j.snb.2020.127924. [90] Ren G X, Li T H, Wei Y M, et al.Estimation of Congou black tea quality by an electronic tongue technology combined with multivariate analysis[J]. Microchemical Journal, 2021, 163: 105899. doi: 10.1016/j.microc.2020.105899. [91] Huang D Y, Bian Z, Qiu Q L, et al.Identification of similar Chinese Congou black teas using an electronic tongue combined with pattern recognition[J]. Molecules, 2019, 24(24): 4549. doi: 10.3390/molecules24244549. [92] Zou G Y, Xiao Y Z, Wang M S, et al.Detection of bitterness and astringency of green tea with different taste by electronic nose and tongue[J]. Plos One, 2018, 13(12): e0206517. doi: 10.1371/journal.pone.0206517. [93] Jin G, Wang Y J, Li L Q, et al.Intelligent evaluation of black tea fermentation degree by FT-NIR and computer vision based on data fusion strategy[J]. LWT, 2020, 125: 109216. doi: 10.1016/j.lwt.2020.109216. [94] Xu M, Wang J, Zhu L Y.The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics[J]. Food Chemistry, 2019, 289: 482-489. [95] Li L Q, Jin S S, Wang Y J, et al.Potential of smartphone-coupled micro NIR spectroscopy for quality control of green tea[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 247: 119096. doi: 10.1016/j.saa.2020.119096. [96] Wang J, Zareef M, He P, et al.Evaluation of matcha tea quality index using portable NIR spectroscopy coupled with chemometric algorithms[J]. Journal of the Science of Food and Agriculture, 2019, 99(11): 5019-5027. [97] Wang Y J, Li T H, Li L Q, et al.Evaluating taste-related attributes of black tea by micro-NIRS[J]. Journal of Food Engineering, 2020, 290: 110181. doi: 10.1016/j.jfoodeng.2020.110181. [98] Dutta L, Talukdar C, Hazarika A, et al.A novel low-cost hand-held tea flavor estimation system[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 4983-4990. [99] Zhang Y Y, Gao W J, Cui C J, et al.Development of a method to evaluate the tenderness of fresh tea leaves based on rapid, [100] Ghosh S, Tudu B, Bhattacharyya N, et al.A recurrent Elman network in conjunction with an electronic nose for fast prediction of optimum fermentation time of black tea[J]. Neural Computing and Applications, 2019, 31(2): 1165-1171. [101] Sharma P, Ghosh A, Tudu B, et al.Monitoring the fermentation process of black tea using QCM sensor based electronic nose[J]. Sensors and Actuators B: Chemical, 2015, 219: 146-157. [102] Ghosh A, Bag A K, Sharma P, et al.Monitoring the fermentation process and detection of optimum fermentation time of black tea using an electronic tongue[J]. IEEE Sensors Journal, 2015, 15(11): 6255-6262. [103] Dong C W, Liang G Z, Hu B, et al.Prediction of Congou black tea fermentation quality indices from color features using non-linear regression methods[J]. Scientific Reports, 2018, 8(1): 10535. doi: 10.1038/s41598-018-28767-2. [104] Dong C W, Li J, Wang J J, et al.Rapid determination by near infrared spectroscopy of theaflavins-to-thearubigins ratio during Congou black tea fermentation process[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 205: 227-234. [105] Dong C W, Ye Y L, Yang C S, et al.Rapid detection of catechins during black tea fermentation based on electrical properties and chemometrics[J]. Food Bioscience, 2021, 40: 100855. doi: 10.1016/j.fbio.2020.100855. [106] Yang C S, Zhao Y, An T, et al.Quantitative prediction and visualization of key physical and chemical components in black tea fermentation using hyperspectral imaging[J]. LWT, 2021, 141: 110975. doi: 10.1016/j.lwt.2021.110975. [107] Jin G, Wang Y J, Li M H, et al.Rapid and real-time detection of black tea fermentation quality by using an inexpensive data fusion system[J]. Food Chemistry, 2021, 358: 129815. doi: 10.1016/j.foodchem.2021.129815. [108] Tseng T S, Hsiao M H, Chen P A, et al.Utilization of a gas-sensing system to discriminate smell and to monitor fermentation during the manufacture of Oolong tea leaves[J]. Micromachines, 2021, 12(1): 93. doi: 10.3390/mi12010093. |
[1] | SHU Zaifa, ZHENG Shenghong, SHAO Jingna, ZHOU Huijuan, JI Qingyong, LIU Yu, HE Weizhong, WANG Liyuan. Responses of Different Tea Cultivars (Strains) to Half Fertilization [J]. Journal of Tea Science, 2022, 42(2): 277-289. |
[2] | ZHANG Qunfeng, NI Kang, YI Xiaoyun, LIU Meiya, RUAN Jianyun. Advances of Magnesium Nutrition in Tea Plant [J]. Journal of Tea Science, 2021, 41(1): 19-27. |
[3] | ZHOU Bo, CHEN Qin, CHEN Hanlin, TANG Hao, LI Jianlong, CHEN Jialin, CHEN Yiyong, LIU Jiayu, TANG Jinchi. Technical Approach of Saving and Improving Efficiency of Chemical Fertilizers in Dancong Tea Area of Guangdong [J]. Journal of Tea Science, 2020, 40(5): 607-616. |
[4] | FAN Peizhen, PAN Cheng, WANG Mengxin, CUI Lin, HAN Baoyu. Differences in Volatile Aroma Compositions among Four Quality Grades of Mountain Lu'an Guapian Tea [J]. Journal of Tea Science, 2020, 40(5): 665-675. |
[5] | WU Xun, LIU Fei, CHEN Zhiwei, WANG Yuwan, CHEN Lin, TU Zheng, ZHOU Xiaofen, YANG Yunfei, YE Yang, TONG Huarong. Study on the Changes of Physical and Chemical Components during the Frying Process of Green Tea by Computer Vision [J]. Journal of Tea Science, 2020, 40(2): 194-204. |
[6] | AN Huimin, OU Xingchang, XIONG Yifan, ZHANG Yangbo, LI Juan, LI Qin, LI Qian, LI Shi, HUANG Jian'an. Study on the Characteristic Aroma Components of Jasmine Tea [J]. Journal of Tea Science, 2020, 40(2): 225-237. |
[7] | YANG Qinglin, YANG Xiangde, JI Lingfei, MA Lifeng, RUAN Jianyun. Effects of Fertigation on Young Tea Plant Growth and Nutrient Absorption [J]. Journal of Tea Science, 2020, 40(1): 96-104. |
[8] | CHEN Yuhong, HUANG Feiyi, LEI Yu, DUAN Jihua, DING Ding, KANG Yanka, LUO Yi, LIU Panpan, LI Saijun, GONG Ziming. Study on the Quality of Five Huangjincha Related Cultivars [J]. Journal of Tea Science, 2019, 39(3): 309-317. |
[9] | HUANG Fan, LIU Fei, WANG Yun, LUO Fan. Research Progress and Prospect on Computer Vision Technology Application in Tea Production [J]. Journal of Tea Science, 2019, 39(1): 81-87. |
[10] | JIANG Yurong, LIU Sitong, GAO Jing, LI Daxiang, XIA Tao, DAI Qianying. The Mechanism of Frost-like Powder and Its Effects on Lu′anguapian Tea Quality [J]. Journal of Tea Science, 2018, 38(5): 487-495. |
[11] | YANG Guangrong, WANG Xiuqing, XIE Jin, LÜ Caiyou, LI Yongmei. Analysis of the Relationship between Soil Nutrients and Tea Main Quality Components of Ancient Tea Arboretum and Modern Tea Garden in Yunnan Province [J]. Journal of Tea Science, 2015, 35(6): 574-582. |
[12] | MA Lifeng, SU Kongwu, LI Jinlan, SHI Yuanzhi, YI Xiaoyun, FANG Li, RUAN Jianyun. Effects of Controlled-release Nitrogen Fertilizer on Tea Yield, Quality, Nitrogen Use Efficiency and Economic Benefit [J]. Journal of Tea Science, 2015, 35(4): 354-362. |
[13] | ZHU Xujun, WANG Yuhua, ZHANG Yu, XIAO Runlin, LI Xinghui. Effects of Different Fertilizer Application Systems on Nitrogen Nutrition in Tea Garden Soil and Yield-Quality of Tea Plant [J]. Journal of Tea Science, 2015, 35(3): 248-254. |
[14] | ZHANG Xing-hai, GONG Shu, ZHOU Xiao-hong, WANG Yue-fei. Design and Research on the Intelligent Expert System of Famous Tea Evaluation [J]. Journal of Tea Science, 2012, 32(2): 167-172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|