Journal of Tea Science ›› 2022, Vol. 42 ›› Issue (4): 447-462.doi: 10.13305/j.cnki.jts.2022.04.004
• Review • Next Articles
YU Rongxin1,2,3, ZHENG Qinqin2,3, CHEN Hongping2,3, ZHANG Jinsong1,*, ZHANG Xiangchun2,3,*
Received:
2022-05-05
Revised:
2022-06-07
Online:
2022-08-15
Published:
2022-08-23
CLC Number:
YU Rongxin, ZHENG Qinqin, CHEN Hongping, ZHANG Jinsong, ZHANG Xiangchun. Recent Advances in Catechin Biomedical Nanomaterials[J]. Journal of Tea Science, 2022, 42(4): 447-462.
[1] Sakanaka S, Juneja L R, Taniguchi M.Antimicrobial effects of green tea polyphenols on thermophilic spore-forming bacteria[J]. Journal of Bioscience and Bioengineering, 2000, 90(1): 81-85. [2] Vazquez-Prieto M A, Bettaieb A, Haj F G, et al. (-)-Epicatechin prevents TNFα-induced activation of signaling cascades involved in inflammation and insulin sensitivity in 3T3-L1 adipocytes[J]. Archives of Biochemistry and Biophysics, 2012, 527(2): 113-118. [3] Friedman M, Mackey B E, Kim H J, et al.Structure activity relationships of tea compounds against human cancer cells[J]. Journal of Agricultural and Food Chemistry, 2007, 55(2): 243-253. [4] Ahmed N A, Radwan N M, Aboul Ezz H S, et al. The antioxidant effect of Green Tea Mega EGCG against electromagnetic radiation-induced oxidative stress in the hippocampus and striatum of rats[J]. Electromagnetic Biology and Medicine, 2017, 36(1): 63-73. [5] Yang C S, Wang H, Sheridan Z P.Studies on prevention of obesity, metabolic syndrome, diabetes, cardiovascular diseases and cancer by tea[J]. Journal of Food and Drug Analysis, 2018, 26(1): 1-13. [6] Sodagari H R, Bahramsoltani R, Farzaei M H, et al.Tea polyphenols as natural products for potential future management of HIV infection: an overview[J]. Journal of Natural Remedies, 2016, 16(2): 60-72. [7] Truong V L, Jeong W S.Antioxidant and anti-inflammatory roles of tea polyphenols in inflammatory bowel diseases[J]. Food Science and Human Wellness, 2022, 11(3): 502-511. [8] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 中国农业出版社, 2003. Wan X C.Biochemistry of tea [M]. 3rd ed. Beijing: China Agricultural Press, 2003. [9] Bansal S, Syan N, Mathur P, et al.Pharmacological profile of green tea and its polyphenols: a review[J]. Medicinal Chemistry Research, 2012, 21(11): 3347-3360. [10] Ohishi T, Goto S, Monira P, et al.Anti-inflammatory action of green tea[J]. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2016, 15(2): 74-90. [11] Anshu M R, Manjeshwar S B, Santosh K K.Epigallocatechin-3-gallate induces apoptosis in estrogen receptor-negative human breast carcinoma cells via modulation in protein expression of p53 and Bax and caspase-3 activation[J]. Molecular Cancer Therapeutics, 2005, 4(1): 81-90. [12] Chyu K Y, Babbidge S M, Zhao X N, et al.Differential effects of green tea: derived catechin on developing versus established atherosclerosis in apolipoprotein E-null mice[J]. Circulation, 2004, 109(20): 2448-2453. [13] Lorenz M, Wessler S, Follmann E, et al.A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation[J]. Journal of Biological Chemistry, 2004, 279(7): 6190-6195. [14] Gordon N C, Wareham D W.Antimicrobial activity of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against clinical isolates of [15] 陈宗懋. 茶多酚类化合物抗癌的生物化学和分子生物学基础[J]. 茶叶科学, 2003, 23(2): 83-93. Chen Z M.Biochemical and molecular biological basis on the anticarcinogenic activity of tea polyphenolic compounds[J]. Journal of Tea Science, 2003, 23(2): 83-93. [16] Mereles D, Hunstein W.Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises?[J]. International Journal of Molecular Sciences, 2011, 12(9): 5592-5603. [17] Riehemann K, Schneider S W, Luger T A, et al.Nanomedicine: challenge and perspectives[J]. Angewandte Chemie International Edition, 2009, 48(5): 872-897. [18] Zhao F F, Shen G Z, Chen C J, et al.Nanoengineering of stimuli-responsive protein-based biomimetic protocells as versatile drug delivery tools[J]. Chemistry A European Journal, 2014, 20(23): 6880-6887. [19] Jain R K, Stylianopoulos T.Delivering nanomedicine to solid tumors[J]. Nature Reviews Clinical Oncology, 2010, 7(11): 653-664. [20] Pryshchepa O, Pomastowski P, Buszewski B.Silver nanoparticles: synthesis, investigation techniques, and properties[J]. Advances in Colloid and Interface Science, 2020, 284: 102246. doi:10.1016/j.cis.2020.102246. [21] Moritz M, Geszke-Moritz M.The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles[J]. Chemical Engineering Journal, 2013, 228: 596-613. [22] Zhang X C, Zhang Z C, Shu Q M, et al.Copper clusters: an effective antibacterial for eradicating multidrug-resistant bacterial infection in vitro and in vivo[J]. Advanced Functional Materials, 2021, 31(14): 2008720. doi: 10.1002/adfm.202008720. [23] Li W Q, Li W, Wan Y L, Wang L F, et al.Preparation, characterization and releasing property of antibacterial nano-capsules composed of epsilon-PL-EGCG and sodium alginate-chitosan[J]. International Journal of Biological Macromolecules, 2022, 204: 652-660. [24] Pace D R C C, Liu X L, Sun M, et al. Anticancer activities of -epigallocatechin-3-gallate encapsulated nanoliposomes in MCF7 breast cancer cells[J]. Journal of Liposome Research, 2013, 23(3): 187-196. [25] Yin C Y, Cheng L, Zhang X, et al.Nanotechnology improves delivery efficiency and bioavailability of tea polyphenols[J]. Journal of Food Biochemistry, 2020, 44(9): e13380. doi: 10.1111/jfbc.13380. [26] 刘宗超, 李哲轩, 张阳, 等. 2020全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2021, 7(2): 1-13. Liu Z C, Li Z X, Zhang Y, et al.Interpretation on the report of Global Cancer Statistics 2020[J]. Journal of Multidisciplinary Cancer Management (Electronic Version), 2021, 7(2): 1-13. [27] 中新网. 中国恶性肿瘤5年生存率已提升至40.5%[J]. 现代医院, 2018, 18(6): 796. Xinhuanet. The 5-year survival rate of malignant tumors in China has increased to 40.5%[J]. Modern Hospitals, 2018, 18(6): 796. [28] Moseley V R, Morris J, Knackstedt R W, et al.Green tea polyphenol epigallocatechin 3-gallate, contributes to the degradation of DNMT3A and HDAC3 in HCT 116 human colon cancer cells[J]. Anticancer Research, 2013, 33: 5325-5334. [29] Qiao Y Y, Cao J Y, Xie L Q, et al.Cell growth inhibition and gene expression regulation by (-)-epigallocatechin-3-gallate in human cervical cancer cells[J]. Archives of Pharmacal Research, 2009, 32(9): 1309-1315. [30] 祁洁, 徐颖磊, 梁文怡, 等. EGCG纳米载体制备技术及其对EGCG活性影响的研究进展[J]. 茶叶科学, 2017, 37(2): 119-129. Qi J, Xu Y L, Liang W Y, et al.Progress on the preparation technologies and the active improvement of EGCG nano-carriers[J]. Journal of Tea Science, 2017, 37(2): 119-129. [31] Lambert J D, Kennett M J, Sang S M, et al.Hepatotoxicity of high oral dose (-)-epigallocatechin-3-gallate in mice[J]. Food and Chemical Toxicology, 2010, 48(1): 409-416. [32] Wang X X, Yang L M, Wang J J, et al.A mouse model of subacute liver failure with ascites induced by step-wise increased doses of (-)-epigallocatechin-3-gallate[J]. Scientific Reports, 2019, 9(1): 18102. doi: 10.1038/s41598-019-54691-0. [33] Vallet-Regí M, Balas F, Arcos D.Mesoporous materials for drug delivery[J]. Angewandte Chemie International Edition, 2007, 46(40): 7548-7558. [34] Giljohann D A,Seferos D S,Daniel W L, et al.Gold nanoparticles for biology and medicine[J]. Angewandte Chemie International Edition, 2010, 49(19): 3280-3294. [35] Caminade A M, Majoral J P.Nanomaterials based on phosphorus dendrimers[J]. Accounts of Chemical Research, 2004, 37(6): 341-348. [36] Ding J, Liang T X Z, Min Q H, et al. "Stealth and fully-laden" drug carriers: self-assembled nanogels encapsulated with epigallocatechin gallate and siRNA for drug-resistant breast cancer therapy[J]. ACS Applied Materials and Interfaces, 2018, 10(12): 9938-9948. [37] Chung J E, Tan S, Gao S J, et al.Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy[J]. Nature Nanotechnology, 2014, 9(11): 907-912. [38] Madhulika S, Priyanka B, Sanjay M, et al.PLGA-encapsulated tea polyphenols enhance the chemotherapeutic efficacy of cisplatin against human cancer cells and mice bearing Ehrlich ascites carcinoma[J]. International Journal of Nanomedicine, 2015, 10: 6789-6809. [39] Zhang H Y, Zeng Y, Zhe S, et al.Functional nanoparticles of tea polyphenols for doxorubicin delivery in cancer treatment[J]. Journal of Materials Chemistry B, 2017, 5(36): 7622-7631. [40] Cheng T J, Liu J J, Ren J, et al.Green tea catechin-based complex micelles combined with doxorubicin to overcome cardiotoxicity and multidrug resistance[J]. Theranostics, 2016, 6(9): 1277-1292. [41] Chen Z H, Wang C H, Chen J Z, et al.Biocompatible, functional spheres based on oxidative coupling assembly of green tea polyphenols[J]. Journal of the American Chemical Society, 2013, 135(11): 4179-4182. [42] Rahim M A, Björnmal M, Bertleff-Zieschang N, et al. Multiligand metal-phenolic assembly from green tea infusions[J]. ACS Applied Materials and Interfaces, 2018, 10(9): 7632-7639. [43] Zhong Q Z, Li S Y, Chen J Q, et al.Oxidation-mediated kinetic strategies for engineering metal-phenolic networks[J]. Angewandte Chemie International Edition, 2019, 58(36): 12563-12568. [44] Fang J Y, Lee W R, Shen S C, et al.Effect of liposome encapsulation of tea catechins on their accumulation in basal cell carcinomas[J]. Journal of Dermatological Science, 2006, 42(2): 101-109. [45] Gülserenİ, Guri A, Corredig M. Encapsulation of tea polyphenols in nanoliposomes prepared with milk phospholipids and their effect on the viability of HT-29 human carcinoma cells[J]. Food Digestion, 2012, 3(1/3): 36-45. [46] Liang K, Chung J E, Gao S J, et al.Highly augmented drug loading and stability of micellar nanocomplexes composed of doxorubicin and poly(ethylene glycol): green tea catechin conjugate for cancer therapy[J]. Advanced Materials, 2018, 30(14): e1706963. doi:10.1002/adma.201706963. [47] Hu B, Yu S J, Shi C, et al.Amyloid-Polyphenol hybrid nanofilaments mitigate colitis and regulate gut microbial dysbiosis[J]. ACS Nano, 2020, 14: 2760-2776. [48] Smith A, Giunta B, Bickford P C, et al.Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer's disease[J]. International Journal of Pharmaceutics, 2010, 389(1/2): 207-212. [49] Gomes J F P S, Rocha S, Pereira M D C, et al. Lipid/particle assemblies based on maltodextrin-gum arabic core as bio-carriers[J]. Colloids and Surfaces B: Biointerfaces, 2010, 76(2): 449-455. [50] Bae K H, Tan S, Yamashita A, et al.Hyaluronic acid-green tea catechin micellar nanocomplexes: fail-safe cisplatin nanomedicine for the treatment of ovarian cancer without off-target toxicity[J]. Biomaterials, 2017, 148: 41-53. [51] Hsieh D S, Wang H, Tan S W, et al.The treatment of bladder cancer in a mouse model by epigallocatechin-3-gallate-gold nanoparticles[J]. Biomaterials, 2011, 32(30): 7633-7640. [52] Li K, Xiao G, Richardson J J, et al.Targeted therapy against metastatic melanoma based on self-assembled metal-phenolic nanocomplexes comprised of green tea catechin[J]. Advanced Science, 2019, 6(5): 1801688. doi: 10.1002/advs.201801688. [53] Ren Z G, Sun S C, Sun R R, et al.A metal: polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy[J]. Advanced Materials, 2020, 32(6): e1906024. doi:10.1002/adma.201906024. [54] Yuan X M, He Y, Zhou G G, et al.Target challenging-cancer drug delivery to gastric cancer tissues with a fucose graft epigallocatechin-3-gallate-gold particles nanocomposite approach[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 183: 147-153. [55] Dai Y L, Yang Z, Cheng S Y, et al.Toxic reactive oxygen species enhanced synergistic combination therapy by self-assembled metal-phenolic network nanoparticles[J]. Advanced Materials, 2018, 30(8): 1704877. doi: 10.1002/adma.201704877. [56] Zheng D W, Lei Q, Zhu J Y, et al.Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy[J]. Nano Letters, 2016, 17(1): 284-291. [57] Yi Z, Sun Z, Chen G C, et al.Size-controlled, colloidally stable and functional nanoparticles based on the molecular assembly of green tea polyphenols and keratins for cancer therapy[J]. Journal of Materials Chemistry B, 2018, 6(9): 1373-1386. [58] Wang D G, Wang T T, Yu H J, et al. Engineering nanoparticles to locally activate T cells in the tumor microenvironment [J]. Science Immunology, 2019, 4(37): eaau6584. doi: 10.1126/sciimmunol. [59] Siddiqui I A, Bharali D J, Nihal M, et al.Excellent anti-proliferative and pro-apoptotic effects of -epigallocatechin-3-gallate encapsulated in chitosan nanoparticles on human melanoma cell growth both in vitro and in vivo[J]. Nanomedicine Nanotechnology Biology and Medicine, 2014, 10(8): 1619-1626. [60] Mintzer M A, Dane E L, O'Toole G A, et al. Exploiting dendrimer multivalency to combat emerging and re-emerging infectious diseases[J]. Molecular Pharmaceutics, 2012, 9(3): 342-354. [61] 王迎军, 黄雪连, 陈军建, 等. 细菌感染微环境响应性高分子材料用于细菌感染性疾病的治疗[J]. 材料导报, 2019, 33(1): 5-15. Wang Y J, Huang X L, Chen J J, et al.Bacterial infection-microenvironment responsive polymeric materials for the treatment of bacterial infectious diseases: a review[J]. Materials Reports, 2019, 33(1): 5-15. [62] Ning X H, Lee S, Wang Z R, et al.Maltodextrin-based imaging probes detect bacteria [63] Moore E H.Atypical mycobacterial infectionin the lung: CT appearance[J]. Thoracic Radiology, 1993, 187(3): 777-782. [64] Si W D, Gong J, Tsao R, et al.Bioassay-guided purification and identification of antimicrobial components in Chinese green tea extract[J]. Journal of Chromatography A, 2006, 1125(2): 204-210. [65] Ikigai H, Nakae T, Hara Y, et al.Bactericidal catechins damage the lipid bilayer[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1993, 1147(1): 132-136. [66] Moreno-Vásquez M J, Plascencia-Jatomea M, Sánchez-Valdes S, et al. Characterization of epigallocatechin-gallate-grafted chitosan nanoparticles and evaluation of their antibacterial and antioxidant potential[J]. Polymers, 2021, 13(9): 1375. doi: 10.3390/polym13091375. [67] Huang T W, Ho Y C, Tsai T N, et al.Enhancement of the permeability and activities of epigallocatechin gallate by quaternary ammonium chitosan/fucoidan nanoparticles[J]. Carbohydrate Polymers, 2020, 242: 116312. doi: 10.1016/j.carbpol.2020.116312. [68] Zhang H C, Jung T, Zhao Y Y, et al.Preparation, characterization and evaluation of antibacterial activity of catechins and catechins-Zn complex loaded beta-chitosan nanoparticles of different particle sizes[J]. Carbohydrate Polymers, 2016, 137: 82-91. [69] Rónavári A, Kovács D, Lgaz N, et al.Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study[J]. International Journal of Nanomedicine, 2017, 12: 871-883. [70] Wu T L, Cui C Y, Fan C C, et al.Tea eggs-inspired high-strength natural polymer hydrogels[J]. Bioactive Materials, 2021, 6(9): 2820-2828. [71] Hu B, Shen Y, Adamcik J, et al.Polyphenol-binding amyloid fibrils self-assembleinto reversible hydrogels with antibacterial activity[J]. ACS Nano, 2018, 12(4): 3385-3396. [72] Yang C S, Ho C T, Zhang J S, et al.Antioxidants: differing meanings in food science and health science[J]. Journal of Agricultural and Food Chemistry, 2018, 66(12): 3063-3068. [73] Zuo J, Zhang Z, Luo M C, et al.Redox signaling at the crossroads of human health and disease[J]. MedComm, 2022, 3(2): e127. doi: 10.1002/mco2.127. [74] Sies H, Jones D P.Reactive oxygen species (ROS) as pleiotropic physiological signalling agents[J]. Nature Reviews Molecular Cell Biology, 2020, 21(7): 363-383. [75] Sekowski S, Terebka M, Veiko A, et al.Epigallocatechin gallate (EGCG) activity against UV light-induced photo damages in erythrocytes and serum albumin: theoretical and experimental studies[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 356: 379-388. [76] Zhang B, Qin Y M, Yang L, et al.A polyphenol-network-mediated coating modulates inflammation and vascular healing on vascular stents[J]. ACS Nano, 2022, 16(4): 6585-6597. [77] Yang P, Zhang J H, Xiang S Y, et al.Green nanoparticle scavengers against oxidative stress[J]. ACS Applied Materials and Interfaces, 2021, 13(33): 39126-39134. [78] Shen W W, Wang Q W, Shen Y, et al.Green tea catechin dramatically promotes RNAi mediated by low-molecular-weight polymers[J]. ACS Central Science, 2018, 4(10): 1326-1333. [79] Fan Q Q, Yang Z, Li Y H, et al.Polycatechol mediated small interfering RNA delivery for the treatment of ulcerative colitis[J]. Advanced Functional Materials, 2021, 31(24): 2101646. doi: 10.1002/adfm.202101646. [80] Xu J, Wang J, Deng F, et al.Green tea extract and its major component epigallocatechin gallate inhibits hepatitis B virus [81] Weber J M, Umunyana A R, Imbeault L, et al.Inhibition of adenovirus infection and adenain by green tea catechins[J]. Antiviral Research, 2003, 58(2): 167-173. [82] Zu M, Yang F, Zhou W L, et al.In vitro anti-influenza virus and anti-inflammatory activities of theaflavin derivatives[J]. Antiviral Research, 2012, 94(3): 217-224. [83] Bettuzzi S, Gabba L, Cataldo S.Efficacy of a po1ypheno1ic standardized green tea extract for the treatment of covid 19 syndrome a proof of princip1e study[J]. COVID, 2021, 1(1): 2-12. [84] Song J M, Lee K H, Seong B L.Antiviral efffect of catechins in green tea on influenza virus[J]. Antiviral Research, 2005, 68(2): 66-74. [85] 熊立瑰, 刘思慧, 黄建安, 等. 茶的抗病毒作用研究进展[J]. 茶叶科学, 2021, 41(2): 143-158. Xiong L G, Liu S H, Huang J A, et al.The antiviral properties of tea[J]. Journal of Tea Science, 2021, 41(2): 143-158. [86] Ge M Y, Xiao Y, Chen H J, et al.Multiple antiviral approaches of (-)-epigallocatechin-3-gallate (EGCG) against porcine reproductive and respiratory syndrome virus infection in vitro[J]. Antiviral Research, 2018, 158: 52-62. [87] Williamson M, Mccormick T, Nance C, et al.Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: potential for HIV-1 therapy[J]. Journal of Allergy and Clinical Immunology, 2006, 118(6): 1369-1374. [88] Calland N, Albecka A, Belouzard S, et al.(-)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry[J]. Hepatology, 2012, 55(3): 720-729. [89] Khaerunnisa S, Kurniawan H, Awaluddin R, et al.Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study[J]. Preprints, 2020: 2020030226. doi: 10.20944/preprints202003. 0226.v1. [90] Nguyen T T H, Woo H J, Kang H K, et al. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in [91] Qamar M T, Alqahtani S M, Alamri M A, et al.Structural basis of SARS-CoV-2 3CL(pro) and anti-COVID-19 drug discovery from medicinal plants[J]. Journal of Pharmaceutical Analysis, 2020, 10(4): 313-319. [92] Mhater S, Srivastava T, Naik S, et al.Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: a review[J]. Phytomedicine, 2021, 85: 153286. doi: 10.1016/j.phymed.2020.153286. [93] Zhang Z C, Zhang X C, Bi K Y, et al.Potential protective mechanisms of green tea polyphenol EGCG against COVID-19[J]. Trends in Food Science and Technology, 2021, 114: 11-24. [94] Reshamwala D, Shroff S, Amamuddy O S, et al.Polyphenols epigallocatechin gallate and resveratrol, and polyphenol-functionalized nanoparticles prevent enterovirus infection through clustering and stabilization of the viruses[J]. Pharmaceutics, 2021, 13(8): 1182. doi: 10.3390/pharmaceutics13081182. [95] Zhu S, Li L L, Gu Z J, et al.15 years of small: research trends in nanosafety[J]. Small, 2020, 16(36): 2000980. doi: 10.1002/smll.202000980. [96] Zhang C Y, Gao L, Yuan Q, et al.Is GSH chelated Pt molecule inactive in anti-ancer treatment? A case study of Pt 6 GS 4[J]. Small, 2020, 16(26): 2002044. doi: 10.1002/smll.202002044. [97] Lin A, Liu Y N, Zhu X F, et al.Bacteria-responsive biomimetic selenium nanosystem for multidrug-resistant bacterial infection detection and inhibition[J]. ACS Nano, 2019, 13(12): 13965-13984. [98] Malhotra N, Audira G, Castillo A L, et al.An update report on the biosafety and potential toxicity of fullerene-based nanomaterials toward aquatic animals[J]. Oxidative Medicine and Cellular Longevity, 2021: 7995223. doi: 10.1155/2021/7995223. [99] Zelepukin I V, Yaremenko A V, Ivanov I N, et al.Long-term fate of magnetic particles in mice: a comprehensive study[J]. ACS Nano, 2021, 15(7): 11341-11357. [100] Sun D X, Zhou S, Gao W.What went wrong with anticancer nanomedicine design and how to make it right[J]. ACS Nano, 2020, 14(10): 12281-12290. [101] Cai R, Chen C Y.The crown and the scepter: roles of the protein corona in nanomedicine[J]. Advanced Materials, 2019, 31(45): 1805740. doi: 10.1002/adma.201805740. [102] Hussain S, Joo J, Kang J, et al.Antibiotic-loaded nanoparticles targeted to the site of infection enhance antibacterial efficacy[J]. Nature Biomedical Engineering, 2018, 2: 95-103. [103] Qiao Y Q, Liu X M, Li B, et al.Treatment of MRSA-infected osteomyelitis using bacterial capturing, magnetically targeted composites with microwave-assisted bacterial killing[J]. Nature Communications, 2020, 11: 4446. doi: 10.1038/s41467-020-18268-0. [104] Liu Y, Shi L Q, Su L Z, et al.Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control[J]. Chemical Society Reviews, 2019, 48(2): 428-446. [105] Fan Y M, Lüchow M, Zhang Y N, et al.Nanogel encapsulated hydrogels as advanced wound dressings for the controlled delivery of antibiotics[J]. Advanced Functional Materials, 2021, 31(7): 2006453. doi: 10.1002/adfm.202006453. [106] Cheng X T, Xu H D, Ran H H, et al.Glutathione-depleting nanomedicines for synergistic cancer therapy[J]. ACS Nano, 2021, 15(5): 8039-8068. [107] Han S, Zal T, Sokolov K V.Fate of antibody-targeted ultrasmall gold nanoparticles in cancer cells after receptor-mediated uptake[J]. ACS Nano, 2021, 15(9): 9495-9508. [108] Zhe W, Duan Y, Duan Y W.Application of polydopamine in tumor targeted drug delivery system and its drug release behavior[J]. Journal of Controlled Release, 2018, 290: 56-74. [109] Zhang X C, He J, Qiao L.3D printed PCLA scaffold with nano-hydroxyapatite coating doped green tea EGCG promotes bone growth and inhibits multidrug-resistant bacteria colonization[J]. Cell Proliferation, 2022: e13289. doi: 10.1111/cpr.13289. |
[1] | CHEN Ke, WANG Yuanzhu, YANG Xiaoying, ZHANG Dongying, ZHU Qiangqiang. Preparation of Nanoparticules with Chitosan Complexed β-lactoglobulin Loaded EGCG and their Effects on Blood Glucose in Diabetic Mice [J]. Journal of Tea Science, 2022, 42(5): 731-739. |
[2] | WANG Yuyuan, LIU Renjian, LIU Shaoqun, SHU Canwei, SUN Binmei, ZHENG Peng. Expression Analysis and Functional Identification of CsTT2 R2R3-MYB Transcription Factor in Tea Plants [J]. Journal of Tea Science, 2022, 42(4): 463-476. |
[3] | ZHANG Yini, JI Zheng. Econometric Analyses of EGCG Research Literature [J]. Journal of Tea Science, 2022, 42(3): 423-434. |
[4] | LIU Yajun, WANG Peiqiang, JIANG Xiaolan, ZHUANG Juhua, GAO Liping, XIA Tao. Research Progress on the Biosynthesis of Monomeric and Polymeric Catechins in Camellia sinensis [J]. Journal of Tea Science, 2022, 42(1): 1-17. |
[5] | MA Bingsong, WANG Jiacai, XU Chengcheng, REN Xiaoying, MA Cunqiang, ZHOU Binxing. Differences of Phenolic Components in Puer Raw Tea with Various Storage Periods and Their Effects on the in vitro Antioxidant Capacities [J]. Journal of Tea Science, 2022, 42(1): 51-62. |
[6] | WU Wenliang, TONG Tong, HU Yao, ZHOU Hao, YIN Xia, ZHANG Shuguang. Camellia Ptilophylla and Specific Chemical Components, Theirs Health Beneficial Effects [J]. Journal of Tea Science, 2021, 41(5): 593-607. |
[7] | CHEN Chunxiao, LOU Wenyu, DING Zhenjian, LI Zhuoye, YANG Yuanyuan, JIN Peng, DU Qizhen. Vardenafil Improves the Proliferative Inhibition of EGCG-β-lactoglobulin Nanoparticles Against Liver Cancer Cells [J]. Journal of Tea Science, 2020, 40(4): 528-535. |
[8] | XU Yan, CAI Xiaqiang, XIE Qianjin, TAI Lingling, LIU Zenghui. The Intergative Effects of Epigallocatechin-3-gallate and Vitamin C on Serum Uric Acid Levels in Hyperuricemic Mice [J]. Journal of Tea Science, 2020, 40(3): 407-414. |
[9] | ZHANG Jianyong, CHEN Lin, CUI Hongchun, WANG Weiwei, XUE Jinjin, XIONG Chunhua, JIANG Heyuan. Optimization of Technical Parameters for Chemical Synthesis of Theasinensin A by PBD and RSM [J]. Journal of Tea Science, 2020, 40(1): 51-62. |
[10] | FANG Hongfeng, ZHANG Huixia, WANG Guohong, YANG Minhe. Fungal Mixed Fermentation for The Production of Lipase and Its Activity Analysis in Galloylated Catechin Hydrolysis [J]. Journal of Tea Science, 2019, 39(1): 88-97. |
[11] | TU Zheng, MEI Huiling, LI Huan, LIU Xinqiu, Emmanuel Arkorful, ZHANG Caili, CHEN Xuan, SUN Kang, LI Xinghui. Effects of Co-fermentation by Eurotium cristatum and Lactobacillus plantarum on the Quality of Green Tea Liquid Beverage [J]. Journal of Tea Science, 2018, 38(5): 496-507. |
[12] | RAN Wei, ZHANG Jin, ZHANG Xin, LIN Songbo, SUN Xiaoling. Infestation of Ectropis obliqua Affects the Catechin Metabolism in Tea Plants [J]. Journal of Tea Science, 2018, 38(2): 133-139. |
[13] | ZHANG Yue, HU Yunfei, WANG Shumao, KE Zixing, LIN Jinke. Bioinformatic Analysis of MYB Transcription Factors Involved in Catechins Biosynthesis in Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2018, 38(2): 162-173. |
[14] | SUN Lili, ZENG Xiangquan, Nilesh W Gaikwad, WANG Huan, XU Hairong, YE Jianhui. Determination of Green Tea Catechin Biomarkers and It′s Relative Application [J]. Journal of Tea Science, 2017, 37(5): 429-441. |
[15] | HUANG Xiangxiang, YANG Zhe, YU Lijun. Research Progress of Green Tea and EGCG for the Prevention and Mitigation of Chronic Obstructive Pulmonary Disease Caused by Cigarette Smoke [J]. Journal of Tea Science, 2017, 37(4): 332-338. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|