Journal of Tea Science ›› 2023, Vol. 43 ›› Issue (1): 67-77.doi: 10.13305/j.cnki.jts.2023.01.005
• Research Paper • Previous Articles Next Articles
DENG Xiaoxu1, XIE Xia1, PAN Yamei1, ZHAO Fenghua2, JIANG Shuangfeng2, XU Wen1, ZHANG Jie1, SUN Runhong1, XIA Mingcong1, YANG Lirong1,*
Received:
2022-08-12
Revised:
2022-10-20
Online:
2023-02-15
Published:
2023-03-01
CLC Number:
DENG Xiaoxu, XIE Xia, PAN Yamei, ZHAO Fenghua, JIANG Shuangfeng, XU Wen, ZHANG Jie, SUN Runhong, XIA Mingcong, YANG Lirong. Screening and Identification of Strains against Fusarium solani Isolated from Camellia sinensis and Analysis of its Biocontrol and Growth Promotion Characteristics[J]. Journal of Tea Science, 2023, 43(1): 67-77.
[1] 朱咏珊, 罗晓欣, 梁浩然, 等. 一株茶树根际细菌的鉴定与生防效果研究[J]. 茶叶科学, 2022, 42(1): 87-100. Zhu Y S, Luo X X, Liang H R, et al.Identification of a tea rhizosphere bacterium and its biocontrol of tea anthracnose disease[J]. Journal of Tea Science, 2022, 42(1): 87-100. [2] 王春晓, 高峰, 陈富桥, 等. “一带一路”倡议对中国茶叶出口的影响—基于渐进双重差分模型的实证分析[J]. 茶叶科学, 2021, 41(6): 865-875. Wang C X, Gao F, Chen F Q, et al.Did the “belt and road” initiative promote the export of China’s tea? —an empirical study based on the generalized DID[J]. Journal of Tea Science, 2021, 41(6): 865-875. [3] 王雪, 王勇, 尹桥秀, 等. 贵州省余庆县茶褐枯病病原菌的鉴定[J]. 植物保护, 2020, 46(2): 101-106. Wang X, Wang Y, Yin Q X, et al.Identification of the pathogen of tea brown blight in Yuqing county, Guizhou province[J]. Plant Protection, 2020, 46(2): 101-106. [4] Chen Y J, Zeng L, Liang S N, et al.First report of [5] 赵晓珍, 王勇, 李冬雪, 等. 茶树新病害病原菌 Zhao X Z, Wang Y, Li D X, et al.Morphological characterization and phylogenetic analysis of the pathogen [6] Kuberan T, Deng C, Cheng L L, et al.Report of [7] Xu W, Zhao F, Deng X X, et al.First report of collar canker and dieback of [8] Sinniah G D, Munasinghe C E, Mahadevan N, et al.Recent incidence of collar canker and dieback of tea ( [9] Satya R S, Pradip K B, Suresh C D.Practical utilization of botanical extracts and microbial in controlling dieback disease of tea [ [10] Wang Y C, Hao X Y, Wang L, et al.Diverse [11] Wang Y C, Qian W J, Li N N, et al.Metabolic changes of caffeine in tea plant ( [12] 胡娴, 陈宸彤, 谢杨鋆, 等. 钩状木霉菌的生物学特性及对腐皮镰刀菌的抑菌机理研究[J]. 中国生物防治学报, 2022, 38(1): 81-87. Hu X, Chen C T, Xie Y J, et al.Study on biological characteristics of [13] Kriaa M, Hammami I, Sahnoun M, et al.Biocontrol of tomato plant diseases caused by [14] Moussa Tarek A A, Rizk M A. Biocontrol of sugarbeet pathogen [15] Rojo F G, Reynoso M M, Ferez M, et al.Biological control by [16] 李凤霞, 张德罡, 姚拓. 高寒地区燕麦根际高效PGPR菌培养条件研究[J]. 甘肃农业大学学报, 2004, 39(3): 316-320. Li F X, Zhang D G, Yao T.Study on cultural conditions of plant growth promoting rhizobacteria in rhizosphere of oat in alpine region[J]. Journal of Gansu Agricultural University, 2004, 39(3): 316-320. [17] 黄静, 盛下放, 何琳燕. 具溶磷能力的植物内生促生细菌的分离筛选及其生物多样性[J]. 微生物学报, 2010, 50(6): 710-716. Huang J, Sheng X F, He L Y.Isolation, screening and biodiversity of phosphorus-solubilizing endophytic bacteria from plants[J]. Acta Microbiological Sinica, 2010, 50(6): 710-716. [18] De Lyra M C C P, Santos D C, Mondragon Jacobo C, et al. Isolation and molecular characterization of endophytic bacteria associated with forage cactus ( [19] Glickmann E, Dessaux Y.A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied and Environmental Microbiology, 1995, 61(2): 793-796. [20] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. Dong X Z, Cai M Y.Manual for systematic identification of common bacteria [M]. Beijing: Science Press, 2001. [21] Kumar S, Stecher G, Tamura K.MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology And Evolution, 2016, 33(7): 1870-1874. [22] 刘国强, 旭格拉·哈布丁, 艾山江, 等. 黑果枸杞根际促生菌的筛选鉴定及促生能力分析[J]. 厦门大学学报, 2019, 58(1): 56-62. Liu G Q, Habden X, Ai S J, et al.Isolation and identification of growth-promoting rhizobacteria from [23] 何碧珀, 郝学政, 刘红彦, 等. 解淀粉芽孢杆菌B10-26对芝麻的促生防病效果及其定殖能力分析[J]. 河南农业科学, 2018, 47(12): 78-83. He B B, Hao X Z, Liu H Y, et al.Analysis of growth-promotion, disease control effect and colonization capacity of [24] 王明江, 章如意, 林多多, 等. 棉花黄萎病不同抗性品种内生菌数量调查与拮抗菌筛选[J]. 江苏农业科学, 2010(2): 102-104. Wang M J, Zhang R Y, Lin D D, et al.Investigation of endophytic bacteria and screening of antagonistic bacteria in cotton verticillium wilt resistant varieties[J]. Journal of Jiangsu Agricultural Sciences, 2010(2): 102-104. [25] 陈奕鹏, 杨扬, 桑建伟, 等. 拮抗内生芽孢杆菌BEB17分离鉴定及其挥发性物质抑菌活性分析[J]. 植物病理学报, 2018, 48(4): 537-546. Chen Y P, Yang Y, Sang J W, et al.Isolation and identification of antagonistic endophytic bacillus BEB17 and analysis of antibacterial activity of volatile organic compounds[J]. Acta Phytoecologica Sinica, 2018, 48(4): 537-546. [26] 覃照标. 茶叶病虫害综合防治技术探讨[J]. 南方农业, 2021, 15(6): 52-53. Tan Z B.Discussion on integrated pest control technology of tea[J]. South China Agriculture, 2021, 15(6): 52-53. [27] 刘远康, 龚兴红. 生物技术在有机茶园病虫害防治中的应用[J]. 植物医生, 2001, 14(3): 21-26. Liu Y K, Gong X H.Application of biotechnology in pest control of organic tea garden[J]. Plant Doctors, 2001, 14(3): 21-26. [28] 许玫, 陈文品. 病原微生物在茶树病虫生物防治中的研究与应用[J]. 中国茶叶, 2003, 25(5): 16-17. Xu M, Chen W P.Research and application of pathogenic microorganisms in biological control of tea plant diseases and pests[J]. China Tea, 2003, 25(5): 16-17. [29] 高旭辉, 高曙辉. 茶树叶面微域环境的病理剖析[J]. 中国茶叶加工, 2000(4): 34-37. Gao X H, Gao S H.Pathological analysis of tea leaf microenvironment[J]. China Tea Processing, 2000(4): 34-37. [30] Saito S S, Hamasaka T, Nemoto S, et al.Multiresidue determination of pesticides in tea by liquid chromatography high resolution mass spectrometry: comparison between orbitrap and time of flight mass analyzers[J]. Food Chemistry, 2018, 256: 140-148. [31] Pravin V, Rosazlin A, Tumirah K, et al.Role of plant growth promoting rhizobacteria in agricultural sustainability: a review[J]. Molecules, 2016, 21(5): 1-17. [32] 张红, 吕家珑, 曹莹菲, 等. 不同植物秸秆腐解特性与土壤微生物功能多样性研究[J]. 土壤学报, 2014, 51(4): 743-752. Zhang H, Lv J L, Cao Y F, et al.Decomposition characteristics of different plant straws and soil microbial functional diversity[J]. Acta Pedologica Sinica, 2014, 51(4): 743-752. [33] 李交昆, 余黄, 曾伟民, 等. 根际促生菌强化植物修复重金属污染土壤的研究进展[J]. 生命科学, 2017, 29(5): 434-442. Li J K, Yu H, Zeng W M, et al.Research progress on plant growth promoting rhizobacteria and their role in phytoremediation of heavy metal contaminated soil[J]. Chinese Bulletin of Life Sciences, 2017, 29(5): 434-442. [34] 李华山, 雷鹏, 许宗奇, 等. 耐盐促生菌 Li H S, Lei P, Xu Z Q, et al.Halotolerance in cucumber seedlings enhanced by plant growth promoting rhizobacterium [35] 刘方春, 邢尚军, 马海林, 等. 干旱胁迫下植物根际促生细菌对侧柏生长及生理生态特征的影响[J]. 林业科学, 2014, 50(6): 67-73. Liu F C, Xing S J, Ma H L, et al.Effects of plant growth promoting rhizobacteria on physio-ecological characteristics of [36] Khan N, Banoa A.Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater[J]. International Journal of Phytoremediation, 2016, 18(12): 1258-1269. [37] Ye M, Tang X, Yang R, Zhang H, et al.Characteristics and application of a novel species of [38] 夏明聪, 邓晓旭, 齐红志, 等. 贝莱斯芽孢杆菌YB-145对小麦纹枯病的防治效果及促生作用[J]. 河南农业科学, 2021, 50(10): 76-83. Xia M C, Deng X X, Qi H Z, et al.Biological control of sharp eyespot and growth promotion in wheat by [39] Kim Y S, Lee Y, Cheon W, et al.Characterization of [40] Jiang C H, Liao M J, Wang H K, et al. [41] Guo J K, Lv X, Jia H L, et al.Effects of EDTA and plant growth promoting rhizobacteria on plant growth and heavy metal uptake of hyperaccumulator [42] Abid U, Sun H, Muhammad F H, et al.Phytoremediation of heavy metal assisted by plant growth promoting (PGP) bacteria[J]. Environmental and Experimental Botany, 2015, 117: 28-40. [43] 郭军康, 董明芳, 丁永祯, 等. 根际促生菌影响植物吸收和转运重金属的研究进展[J]. 生态环境学报, 2015, 24(7): 1228-1234. Guo J K, Dong M F, Ding Y Z, et al.Effects of plant growth promoting rhizobacteria on plants heavy metal uptake and transport: a review[J]. Ecology and Environmental Sciences, 2015, 24(7): 1228-1234. [44] Zhang X F, Hu Z H, Yan T, et al.Arbuscular mycorrhizal fungi alleviate Cd phytotoxicity by altering Cd subcellular distribution and chemical forms in [45] Georges B, Bernard D.Cell wall degrading enzymes, inhibitor proteins, and oligosaccharides participate in the molecular dialogue between plants and pathogens[J]. Plant Physiology and Biochemistry, 2000, 38(1/2): 157-163. [46] Klarzynski O, Plesse B, Joubert J M, et al.Linear [47] Lim S M, Yoon M Y, Choi G J, et al.Diffusible and volatile antifungal compounds produced by an antagonistic [48] Chowdhury S P, Hartmann A, Gao X W, et al.Biocontrol mechanism by root associated [49] Xu S, Liu Y X, Cernava T, et al.Fusarium fruiting body microbiome member |
[1] | ZHAO Dongwei. Nomenclature, Typification, and Natural Distribution of Camellia sinensis var. assamica (Theaceae) [J]. Journal of Tea Science, 2022, 42(4): 491-499. |
[2] | CHANG Yali, HUANG Xiaobing, JIANG Shuangfeng, HUANG Shuangjie, SUN Mufang, LIU Wei, GUO Guiyi. Analysis of Fat Content and Fatty Acid Composition and Absolute Content in the Tea Seeds from Southern Henan Tea Germplasms [J]. Journal of Tea Science, 2020, 40(3): 352-362. |
[3] | KONG Lei, ZHU Xiangxiang, WANG Yiwei, XIE Xiaofang, JIANG Changjun, LI Yeyun. Identification and Expression Analysis of Tea Plant (Camellia sinesis) miR164a and Its Target Gene [J]. Journal of Tea Science, 2018, 38(6): 547-558. |
[4] | WANG Li-yuan, ZHANG Cheng-cai, CHENG Hao, WEI Kang. Characterization of EST-derived SNPs and Development of SNP-markers in Tea (Camellia sinensis) [J]. Journal of Tea Science, 2012, 32(4): 369-376. |
[5] | CHEN Sheng-xiang, QI Gui-nian, XIA Jian-bing, ZOU Yao, SHAN Hong-li. mRNA Differential Expressionof Camellia sinensis under Drought Conditions [J]. Journal of Tea Science, 2012, 32(1): 53-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|