Journal of Tea Science ›› 2023, Vol. 43 ›› Issue (2): 216-226.doi: 10.13305/j.cnki.jts.2023.02.012
• Research Paper • Previous Articles Next Articles
QIU Shiting1,2, HOU Xue1,2,*, LEI Shaorong1,2, HAN Mei1,2, HE Guangyun1,2, LI Ying1,2, QIN Shudi1,2
Received:
2023-01-04
Revised:
2023-03-03
Online:
2023-04-15
Published:
2023-05-05
CLC Number:
QIU Shiting, HOU Xue, LEI Shaorong, HAN Mei, HE Guangyun, LI Ying, QIN Shudi. Simultaneous Determination of Nicotinamide Adenine Dinucleotide and Its Four Precursors in Tea by Ultra-high Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Journal of Tea Science, 2023, 43(2): 216-226.
[1] | Grant R, Berg J, Mestayer R, et al.A pilot study investigating changes in the human plasma and urine NAD+ metabolome during a 6 hour intravenous infusion of NAD+[J]. Frontiers in Aging Neuroscience, 2019, 11: 257-267. |
[2] | Zamporlini F, Ruggieri S, Mazzola F, et al.Novel assay for simultaneous measurement of pyridine mononucleotides synthesizing activities allows dissection of the NAD+ biosynthetic machinery in mammalian cells[J]. FEBS Journal, 2014, 281: 5104-5119. |
[3] | Zhu X H, Lu M, Lee B Y, et al.In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences[J]. PNAS, 2015, 112(9): 2876-2881. |
[4] | Massudi H, Grant R, Braidy N, et al.Age-associated changes in oxidative stress and NAD+ metabolism in human tissue[J]. Plos One, 2012, 7(7): e42357. doi: 10.1371/journal.pone.0042357. |
[5] | Hong W, Mo F, Zhang Z, et al.Nicotinamide mononucleotide: a promising molecule for therapy of diverse diseases by targeting NAD+ metabolism[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 246. doi: 10.3389/fcell.2020.00246. |
[6] | Lautrup S, Sinclair D A, Mattson M P, et al.NAD+ in brain aging and neurodegenerative disorders[J]. Cell Metabolism, 2019, 30(4): 630-655. |
[7] | 刘晓谦, 杨红, 赵靖源, 等. UPLC-MS/MS测定铁皮石斛及其同属近源石斛品种中烟酰胺单核苷酸和烟酰胺腺嘌呤二核苷酸含量[J]. 中国中药杂志, 2021, 46(16): 4034-4039.Liu X Q, Yang H, Zhao J Y, et al.Determination of β-nicotinamide mononucleotide and nicotinamide adenine dinucleotide in Dendrobium officinale and congeneric species by UPLC-MS/MS[J]. China Journal of Chinese Materia Medica, 2021, 46(16): 4034-4039. |
[8] | Ummarino S, Mozzon M, Zamporlini F, et al.Simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and nicotinamide adenine dinucleotide in milk by a novel enzyme-coupled assay[J]. Food Chemistry, 2017, 221(15): 161-168. |
[9] | Shi W, Hegeman M A, Dartel D, et al.Effects of a wide range of dietary nicotinamide riboside (NR) concentrations on metabolic flexibility and white adipose tissue (WAT) of mice fed a mildly obesogenic diet[J]. Molecular Nutrition & Food Research, 2017, 61(8): 1600878. doi: 10.1002/mnfr.201600878. |
[10] | Bogan K L, Brenner C.Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition[J]. Annual Review of Nutrition, 2008, 28(1): 115-130. |
[11] | Bieganowski P, Brenner C.Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans[J]. Cell, 2004, 117(4): 495-502. |
[12] | Yoshino J, Mills K F, Yoon M J, et al.Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice[J]. Cell Metabolism, 2011, 14(4): 528-536. |
[13] | Wu K, Li J Q, Zhou X H, et al.NADH and NRH as potential dietary supplements or pharmacological agents for early liver injury caused by acute alcohol exposure[J]. Journal of Functional Foods, 2021, 87: 104852. doi: 10.1016/j.jff.2021.104852. |
[14] | Mills K, Yoshida S, Stein L, et al.Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice[J]. Cell Metabolism, 2016, 24(6): 795-806. |
[15] | Zhang H B, Ryu D, Wu Y B, et al.NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice[J]. Science, 2016, 352(6292): 1436-1443. |
[16] | Cantó C, Menzies K, Auwerx J.NAD+ metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus[J]. Cell Metabolism, 2015, 22(1): 31-53. |
[17] | Yoshino J, Baur J A, Imai S I.NAD+ intermediates: the biology and therapeutic potential of NMN and NR[J]. Cell Metabolism, 2018, 27(3): 513-528. |
[18] | Fang E F, Lautrup S, Hou Y, et al.NAD+ in aging: molecular mechanisms and translational implications[J]. Trends in Molecular Medicine, 2017, 23(10): 899-916. |
[19] | 孙先枝, 刘小杰, 张芬, 等. 烟酰胺单核苷酸的生理功能及其在药品和食品中的应用[J]. 中国食品添加剂, 2022, 33(11): 246-251.Sun X Z, Liu X J, Zhang F, et al.Nicotinamide mononucleotides physiological functions and its applications in medicine and food industry[J]. China Food Additives, 2022, 33(11): 246-251. |
[20] | 刘小芳, 蒋永毅, 王超, 等. 高效液相色谱-串联质谱法测定食品原料中烟酰胺单核苷酸的含量[J]. 食品科技, 2021, 46(8): 251-256, 262.Liu X F, Jiang Y Y, Wang C, et al.Determination of nicotinamide mononucleotide in the natural food materials by high performance liquid chromatography-mass spectrometry[J]. Food Science and Technology, 2021, 46(8): 251-256, 262. |
[21] | 杨月欣. 中国食物成分表标准版:第一册[M]. 第6版. 北京: 北京大学医学出版社, 2018.Yang Y X.China food composition tables standard edition: Volume 1 [M]. Version 6. Beijing: Peking University Medical Press, 2018. |
[22] | 戴申, 鹿颜, 余鹏辉, 等. 茶叶预防衰老及衰老相关疾病研究进展[J]. 茶叶科学, 2019, 39(1): 23-33.Dai S, Lu Y, Yu P H, et al.Research progress of the preventing effects of tea on aging and aged-related pathologies[J]. Journal of Tea Science, 2019, 39(1): 23-33. |
[23] | 申雯, 黄建安, 李勤, 等. 茶叶主要活性成分的保健功能与作用机制研究进展[J]. 茶叶通讯, 2016, 43(1): 8-13, 65.Shen W, Huang J A, Li Q, et al.The research progress of health care function and mechanism of the active ingredients in tea[J]. Journal of Communication, 2016, 43(1): 8-13, 65. |
[24] | Yaku K, Okabe K, Nakagawa T.Simultaneous measurement of NAD metabolome in aged mice tissue using liquid chromatography tandem-mass spectrometry[J]. Biomedical Chromatography, 2018, 32(6): e4205. doi: 10.1002/bmc.4205. |
[25] | Yoshino J, Imai S I.Accurate measurement of nicotinamide adenine dinucleotide (NAD+) with high-performance liquid chromatography[J]. Methods in Molecular Biology, 2013, 1077: 203-215. |
[26] | Stocchi V, Cucchiarini L, Magnani M, et al.Simultaneous extraction and reverse-phase high-performance liquid chromatographic determination of adenine and pyridine nucleotides in human red blood cells[J]. Analytical Biochemistry, 1985, 146(1): 118-124. |
[27] | 李东芹. 液质联用法测定蔬菜和水果中的烟酰胺单核苷酸[J]. 实验技术与管理, 2019, 36(9): 57-59, 72.Li D Q.Determination of nicotinamide mononucleotides in vegetables and fruits by liquid chromatography-mass spectrometry[J]. Experimental Technology and Management, 2019, 36(9): 57-59, 72. |
[28] | 胡高华, 曹建荣, 杨蕾文宣, 等. 基于壳聚糖/氧化石墨烯/硅藻土固相萃取-液相色谱串联质谱测定茶叶中多种农药残留[J]. 茶叶科学, 2022, 42(2): 249-262.Hu G H, Cao J H, Yanlei W X, et al.Determination of multi-pesticide residues in tea based on the combination of CS/GO/DM SPE column and UPLC-MS/MS[J]. Journal of Tea Science, 2022, 42(2): 249-262. |
[29] | Ferrer C, Lozano A, Agüera A, et al.Overcoming matrix effects using the dilution approach in multiresidue methods for fruits and vegetables[J]. Journal of Chromatography A, 2011, 1218(42): 7634-7639. |
[30] | 柯朝甫, 张涛, 武晓岩, 等. 代谢组学数据分析的统计学方法[J]. 中国卫生统计, 2014, 31(2): 357-359.Ke C F, Zhang T, Wu X Y, et al.Statistical methods for metabolomics data analysis[J]. Chinese Journal of Health Statistics, 2014, 31(2): 357-359. |
[1] | GUO Lina, HAO Xinyuan, WANG Lu, QI Meng, LI Xiaoman, REN Hengze, ZHENG Qinghua, WANG Xinchao, ZENG Jianming. Study on the Characteristics of CsPHT1;3 and Its Response to Selenium in Tea Plants [J]. Journal of Tea Science, 2023, 43(2): 173-182. |
[2] | LI Hongli, ZHOU Tiefeng, MAO Yuxiao, HUANG Haitao, CUI Hongchun, ZHENG Xuxia, ZHAO Yun. Isolation and Identification of Anthracnose Pathogen from Xihu Longjing Plantation and Screening of Its Plant-derived Fungicides [J]. Journal of Tea Science, 2023, 43(2): 194-204. |
[3] | ZHENG Shizhong, ZHOU Ziwei, CHEN Xiaohui, CAI Liewei, JIANG Shengtao, LIU Shengrong. Screening, Identification and Culture Condition Optimization of Antagonistic Endophytic Bacteria Against Gloeosporium theae-sinensis Miyake [J]. Journal of Tea Science, 2023, 43(2): 205-215. |
[4] | XU Lili, WANG Jiatong, ZHU Yin, SHI Jiang, LIN Zhi. Identification of Key Volatile Components of “Peach Fragrance” in Blended Peach Oolong Tea [J]. Journal of Tea Science, 2023, 43(2): 237-249. |
[5] | PAN Yingjie, MENG Xianghe, QIAN Yuanfeng, NING Jianmei, WANG Yueyuan, LIU Qiming, TANG Shiqin, XU Xiaoan, YE Qin. Simultaneous Determination of 79 Pesticides Residues in Fresh Tea Leaves by Ultra-high Performance Liquid Chromatography-mass Spectrometry [J]. Journal of Tea Science, 2023, 43(2): 250-262. |
[6] | LI Ziqiang, YANG Mei, ZHANG Xinzhong, LUO Fengjian, LOU Zhengyun, LIANG Shuang. Simultaneous Determination of Glyphosate, Glufosinate and Aminomethyl Phosphonic Acid Residues in Tea by Modified QuEChERS Method Coupled with UPLC-MS/MS [J]. Journal of Tea Science, 2023, 43(2): 263-274. |
[7] | ZHANG Ying, QIU Tong, HAN Ziyi, AN Qi, ZHAO Xiaoyi, JIANG Qing, LI Luqing, NING Jingming, WAN Xiaochun, DAI Qianying. Application of Ranking and Napping-UFP in the Development of Standard Yellow Tea Samples from Western Anhui Province [J]. Journal of Tea Science, 2023, 43(2): 275-286. |
[8] | MA Yuanyuan, CAO Qingqing, GAO Yizhou, LIU Yuyi, DENG Sihan, YIN Junfeng, XU Yongquan. Research Progress on the Bitterness of Green Tea [J]. Journal of Tea Science, 2023, 43(1): 1-16. |
[9] | MA Wanzhu, ZHU Kangying, ZHUO Zhiqing. Effects of Acidification on Mineral Transformation and Potassium Supply Capacity of Tea Garden Soils [J]. Journal of Tea Science, 2023, 43(1): 17-26. |
[10] | LIU Haoran, ZHANG Chenyu, GONG Yang, YE Yuanyuan, CHEN Jiedan, CHEN Liang, LIU Dingding, MA Chunlei. Development and Application of Albinotea Plant mSNP Molecular Markers Based on Genome-wide Resequencing [J]. Journal of Tea Science, 2023, 43(1): 27-39. |
[11] | YAN Jiawei, CHEN Zongmao, LI Zhaoqun, LUO Zongxiu, BIAN Lei, CAI Xiaoming, JIN Shan. Identification of Watery Saliva Protein from Empoasca onukii and Preliminary Study on the Involvement in the Formation of “Hopperburn” Symptoms in Tea Plants [J]. Journal of Tea Science, 2023, 43(1): 40-54. |
[12] | CHENG Kaixin, YANG Kaixin, DENG Yayuan, LI Xin, LIU Enbei, WANG Yuchun, LÜ Wuyun. Pathogenicity and Fungicide Sensitivity of Colletotrichum camelliae from Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2023, 43(1): 55-66. |
[13] | WU Shaoling, WANG Zhihui, SHANG Hu, ZHU Chensong, YE Tingting, SUN Weijiang. Effect of Pile-up Processing Duration on Flavor Quality of White Tea [J]. Journal of Tea Science, 2023, 43(1): 78-90. |
[14] | LU Li, ZHAN Dongmei, ZHOU Chengzhe, ZHU Chen, XIE Siyi, XU Kai, TIAN Caiyun, LAI Zhongxiong, GUO Yuqiong. Effects of Key Genes of Jasmonic Acid Synthesis and Transduction Pathway in Tea Plant on Terpenoids during Oolong Tea Processing [J]. Journal of Tea Science, 2023, 43(1): 91-108. |
[15] | WEI Hao, LAN Tianmeng, MIAO Yiwen, MENG Qing, KUN Jirui, ZHANG Yu, TONG Huarong. Analysis of the Effect of Different Full Firing Methods on the Aroma of Jinmudan Congou Black Tea Based on Sensomics Characterization [J]. Journal of Tea Science, 2023, 43(1): 109-123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|