Journal of Tea Science ›› 2023, Vol. 43 ›› Issue (3): 325-334.doi: 10.13305/j.cnki.jts.2023.03.007
• Research Paper • Previous Articles Next Articles
LI Jiasi, LIU Yingqing, ZHANG Yongheng, ZHANG Ying'ao, XIAO Yezi, LIU Lu, YU Youben*
Received:
2023-02-12
Revised:
2023-04-03
Online:
2023-06-15
Published:
2023-06-29
CLC Number:
LI Jiasi, LIU Yingqing, ZHANG Yongheng, ZHANG Ying'ao, XIAO Yezi, LIU Lu, YU Youben. Identification of Transcription Factors Interacting with CsNCED2 Promoter and Their Response to Abiotic Stress[J]. Journal of Tea Science, 2023, 43(3): 325-334.
[1] Leung J, Giraudat J.Abscisic acid signal transduction[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 199-222. [2] Chen K, Li G J, Bressan R A, et al.Abscisic acid dynamics, signaling, and functions in plants[J]. Journal of Integrative Plant Biology, 2020, 62(1): 25-54. [3] Shu K, Chen Q, Wu Y R, et al.ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein Levels[J]. The Plant Journal, 2016, 85(3): 348-361. [4] Shu K, Chen Q, Wu Y, et al.ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis [5] 陈唯, 曾晓贤, 谢楚萍, 等. 植物内源ABA水平的动态调控机制[J]. 植物学报, 2019, 54(6): 677-687. Chen W, Zeng X X, Xie C P, et al.The dynamic regulation mechanism of the endogenous ABA in plant[J]. Chinese Bulletin of Botany, 2019, 54(6): 677-687. [6] Sauter A, Davies W J, Hartung W.The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot[J]. Journal of Experimental Botany, 2001, 52(363): 1991-1997. [7] Ding F, Wang X Z, Li Z Y, et al.Jasmonate positively regulates cold tolerance by promoting ABA biosynthesis in tomato[J]. Plants, 2022, 12(1): 60. doi: 10.3390/plants12010060. [8] Huang Y Y, Zhou J H, Li Y X, et al.Salt stress promotes abscisic acid accumulation to affect cell proliferation and expansion of primary roots in rice[J]. International Journal of Molecular Sciences, 2021, 22(19): 10892. doi: 10.3390/ijms221910892. [9] Peng Z, Hu Y, Zhang J L, et al. [10] Mittler R, Blumwald E.The roles of ROS and ABA in systemic acquired acclimation[J]. The Plant Cell, 2015, 27(1): 64-70. [11] Lefebvre V, North H, Frey A, et al.Functional analysis of Arabidopsis [12] Pei X X, Wang X Y, Fu G Y, et al.Identification and functional analysis of 9- [13] Huang Y, Jiao Y, Xie N K, et al. [14] Jiang Y J, Liang G, Yu D Q.Activated expression of WRKY57 confers drought tolerance in [15] Huang S Z, Ma Z M, Hu L J, et al.Involvement of rice transcription factor OsERF19 in response to ABA and salt stress responses[J]. Plant Physiology and Biochemistry, 2021, 167: 22-30. [16] An S M, Liu Y, Sang K Q, et al.Brassinosteroid signaling positively regulates abscisic acid biosynthesis in response to chilling stress in tomato[J]. Journal of Integrative Plant Biology, 2023, 65(1): 10-24. [17] 丁杰荣, 张静, 江立群, 等. OsWRKY67负向调控水稻耐旱性的功能分析[J]. 分子植物育种, 2023, 21(10): 3272-3281. Ding J R, Zhang J, Jiang L Q, et al.Function analysis of OsWRKY67 negatively regulating drought-tolerance in rice[J]. Molecular Plant Breeding, 2023, 21(10): 3272-3281. [18] 倪子鑫, 武清扬, 杨云, 等. 茶树CsCCD基因家族全基因组鉴定及乌龙茶LED补光晾青下表达分析[J]. 生物工程学报, 2022, 38(1): 359-373. Ni Z X, Wu Q Y, Yang Y, et al.Genome-wide identification of CsCCD gene family in tea plant ( [19] Cho J-Y, Mizutani M, Shimizu B, et al.Chemical profiling and gene expression profiling during the manufacturing process of taiwan oolong tea “oriental beauty”[J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(6): 1476-1486. [20] 王赞, 陈丹, 岳川, 等. 茶树 Wang Z, Chen D, Yue C, et al.Cloning and expression analysis of [21] Liu S C, Jin J Q, Ma J Q, et al.Transcriptomic analysis of tea plant responding to drought stress and recovery[J]. Plos One, 2016, 11(1): e0147306. doi: 10.1371/journal.pone.0147306. [22] Zhang Y H, Xiao Y Z, Zhang Y G, et al.Accumulation of galactinol and ABA is involved in exogenous EBR-induced drought tolerance in tea plants[J]. Journal of Agricultural and Food Chemistry, 2022, 70(41): 13391-13403. [23] Gao M J, Yin X, Yang W B, et al.GDSL lipases modulate immunity through lipid homeostasis in rice[J]. PLOS Pathogens, 2017, 13(11): e1006724. doi: 10.1371/journal.ppat.1006724. [24] Patankar H V, Al-Harrasi I, Al-Yahyai R, et al.Functional characterization of date palm aquaporin gene [25] Yoon J S, Flores P C, Seo Y W.Overexpression of [26] Beisson F, Li Y H, Bonaventure G, et al.The acyltransferase GPAT5 is required for the synthesis of suberin in seed coat and root of [27] 黄桂媛, 张瑛, 林玲, 等. 酵母单杂交文库构建及巨峰葡萄 Huang G Y, Zhang Y, Lin L, et al.Yeast one-hybrid library construction and screening of upstream regulators of [28] 许奕, 李羽佳, 魏卿, 等. 香蕉 Xu Y, Li Y J, Wei Q, et al.Constructions of banana [29] 郇蕾, 王旭旭, 陈修淼, 等. 桃ABA信号关键基因 Huan L, Wang X X, Chen X M, et al.Constructing yeast one-hybrid library and screening the potential regulator of [30] Lee S U, Mun B G, Bae E K, et al.Drought stress-mediated transcriptome profile reveals NCED as a key player modulating drought tolerance in [31] Estrada-Melo A C, Ma Co, Reid M S, et al. Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in Petunia[J]. Horticulture Research, 2015, 2(1): 15013. doi: 10.1038/hortres.2015.13. [32] Wan S Q, Wang W D, Zhou T S, et al.Transcriptomic analysis reveals the molecular mechanisms of [33] Ni Z Q, Jin J, Ye Y, et al.Integrative transcriptomic and phytohormonal analyses provide insights into the cold injury recovery mechanisms of tea leaves[J]. Plants, 2022, 11(20): 2751. doi: 10.3390/plants11202751. [34] Shang X G, Yu Y J, Zhu L J, et al.A cotton NAC transcription factor GhirNAC2 plays positive roles in drought tolerance via regulating ABA biosynthesis[J]. Plant Science, 2020, 296: 110498. doi: 10.1016/j.plantsci.2020.110498. [35] Ma H Z, Liu C, Li Z X, et al.ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development[J]. Plant Physiology, 2018, 178(2): 753-770. |
[1] | SHEN Ruihan, MA Lifeng, YANG Xiangde, FANG Li. Effects of Nitrogen Form and Weak Light Stress on Tea Plant Growth and Metabolism [J]. Journal of Tea Science, 2023, 43(3): 349-355. |
[2] | CHEN Zhenyan, ZHANG Xiangqin, CHEN Lan, XIE Siyi, LIU Shuoqian, TIAN Na. Identification and Expression Pattern Analysis of NUDIX Gene Family in Camellia sinensis [J]. Journal of Tea Science, 2023, 43(2): 159-172. |
[3] | GUO Lina, HAO Xinyuan, WANG Lu, QI Meng, LI Xiaoman, REN Hengze, ZHENG Qinghua, WANG Xinchao, ZENG Jianming. Study on the Characteristics of CsPHT1;3 and Its Response to Selenium in Tea Plants [J]. Journal of Tea Science, 2023, 43(2): 173-182. |
[4] | HU Zhihang, QIN Zhiyuan, LI Jingwen, YANG Ni, CHEN Yi, LI Tong, ZHUANG Jing. Identification of the Light-harvesting Chlorophyll-protein Complex Gene CsLhcb2 and Its Response to Low Temperature in Tea Plants [J]. Journal of Tea Science, 2023, 43(2): 183-193. |
[5] | LI Hongli, ZHOU Tiefeng, MAO Yuxiao, HUANG Haitao, CUI Hongchun, ZHENG Xuxia, ZHAO Yun. Isolation and Identification of Anthracnose Pathogen from Xihu Longjing Plantation and Screening of Its Plant-derived Fungicides [J]. Journal of Tea Science, 2023, 43(2): 194-204. |
[6] | ZHENG Shizhong, ZHOU Ziwei, CHEN Xiaohui, CAI Liewei, JIANG Shengtao, LIU Shengrong. Screening, Identification and Culture Condition Optimization of Antagonistic Endophytic Bacteria Against Gloeosporium theae-sinensis Miyake [J]. Journal of Tea Science, 2023, 43(2): 205-215. |
[7] | LIU Haoran, ZHANG Chenyu, GONG Yang, YE Yuanyuan, CHEN Jiedan, CHEN Liang, LIU Dingding, MA Chunlei. Development and Application of Albinotea Plant mSNP Molecular Markers Based on Genome-wide Resequencing [J]. Journal of Tea Science, 2023, 43(1): 27-39. |
[8] | YAN Jiawei, CHEN Zongmao, LI Zhaoqun, LUO Zongxiu, BIAN Lei, CAI Xiaoming, JIN Shan. Identification of Watery Saliva Protein from Empoasca onukii and Preliminary Study on the Involvement in the Formation of “Hopperburn” Symptoms in Tea Plants [J]. Journal of Tea Science, 2023, 43(1): 40-54. |
[9] | CHENG Kaixin, YANG Kaixin, DENG Yayuan, LI Xin, LIU Enbei, WANG Yuchun, LÜ Wuyun. Pathogenicity and Fungicide Sensitivity of Colletotrichum camelliae from Tea Plant (Camellia sinensis) [J]. Journal of Tea Science, 2023, 43(1): 55-66. |
[10] | LU Li, ZHAN Dongmei, ZHOU Chengzhe, ZHU Chen, XIE Siyi, XU Kai, TIAN Caiyun, LAI Zhongxiong, GUO Yuqiong. Effects of Key Genes of Jasmonic Acid Synthesis and Transduction Pathway in Tea Plant on Terpenoids during Oolong Tea Processing [J]. Journal of Tea Science, 2023, 43(1): 91-108. |
[11] | TANG Rongjin, LIU Haoran, LIU Dingding, ZHANG Chenyu, GONG Yang, YE Yuanyuan, CHEN Jiedan, CHEN Liang, MA Chunlei. The Ultrastructure and Molecular Mechanism of Albino Pericarp in Tea Plants [J]. Journal of Tea Science, 2022, 42(6): 779-790. |
[12] | ZHOU Beini, MEI Huiling, LI Jianjie, CHEN Lingli, ZHONG Qing, LI Xiaoqian, CHEN Xuan, LI Xinghui. Root Growth and Organic Acid Secretion of Tea Plants Affected by Phosphorus and Aluminum Interaction [J]. Journal of Tea Science, 2022, 42(6): 819-827. |
[13] | CHEN Qiyu, MA Jianqiang, CHEN Jiedan, CHEN Liang. Genetic Diversity of Mature Leaves of Tea Germplasms Based on Image Features [J]. Journal of Tea Science, 2022, 42(5): 649-660. |
[14] | SUN Yue, WU Jun, WEI Chaoling, LIU Mengyue, GAO Chenxi, ZHANG Lingzhi, CAO Shixian, YU Shuntian, JIN Shan, SUN Weijiang. Screening of Tea Germplasm Resistant to Matsumurasca onukii and Dendrothrips minowai Priesner and Analysis of Resistance-related Factors [J]. Journal of Tea Science, 2022, 42(5): 689-704. |
[15] | WANG Yuyuan, LIU Renjian, LIU Shaoqun, SHU Canwei, SUN Binmei, ZHENG Peng. Expression Analysis and Functional Identification of CsTT2 R2R3-MYB Transcription Factor in Tea Plants [J]. Journal of Tea Science, 2022, 42(4): 463-476. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|