[1] Land M F, Nilsson D E.Animal eyes[M]. Oxford: Oxford University Press, 2012. [2] Klotz J H, Reid B L, Gordon W C.Variation of ommatidia number as a function of worker size incamponotus pennsylvanicus (degeer) (hymenoptera: Formicidae)[J]. Insectes Sociaux, 1992, 39: 233-236. [3] Zollikofer C, Wehner R, Fukushi T.Optical scaling in conspecific cataglyphis ants[J]. The Journal of Experimental Biology, 1995, 198: 1637-1646. [4] Schwarz S, Narendra A, Zeil J.The properties of the visual system in the australian desert ant Melophorus bagoti[J]. Arthropod Structure & Development, 2011, 40(2): 128-134. [5] Baker G T, Ma P W K. Morphology and number of ommatidia in the compound eyes of Solenopsis invicta, Solenopsis richteri, and their hybrid (hymenoptera: Formicidae)[J]. Zoologischer Anzeiger-A Journal of Comparative Zoology, 2006, 245(2): 121-125. [6] Perl C D, Niven J E.Colony-level differences in the scaling rules governing wood ant compound eye structure[J]. Scientific Reports, 2016, 6: 24204. doi: 10.1038/srep24204. [7] Kapustjanskij A, Streinzer M, Paulus H F, et al.Bigger is better: implications of body size for flight ability under different light conditions and the evolution of alloethism in bumblebees[J]. Functional Ecology, 2007, 21(6): 1130-1136. [8] Palavalli-Nettimi R, Ogawa Y, Ryan L A, et al. Miniaturisation reduces contrast sensitivity and spatial resolving power in ants[J]. Journal of Experimental Biology, 2019, 222(12): jeb203018. doi: 10.1242/jeb.203018. [9] Taylor G J, Tichit P, Schmidt M D, et al.Bumblebee visual allometry results in locally improved resolution and globally improved sensitivity[J]. eLife, 2019, 8: e40613. doi: 10.7554/elife.40613. [10] Huxley J S, Teissier G.Terminology of relative growth[J]. Nature, 1936, 137: 780-781. [11] Fleurot E, Venner S, Pélisson P F, et al.The morphological allometry of four closely related and coexisting insect species reveals adaptation to the mean and variability of the resource size[J]. Oecologia, 2022, 200: 159-168. [12] Currea J P, Smith J L, Theobald J C.Small fruit flies sacrifice temporal acuity to maintain contrast sensitivity[J]. Vision Research, 2018, 149: 1-8. [13] Perl C D, Niven J E.Differential scaling within an insect compound eye[J]. Biology Letters, 2016, 12(3): 20160042. doi: 10.1098/rsbl.2016.0042. [14] Merry J, Morehouse N I, Yturralde K M, et al.The eyes of a patrolling butterfly: visual field and eye structure in the Orange Sulphur, Colias eurytheme (Lepidoptera, Pieridae)[J]. Journal of Insect Physiology, 2006, 52(3): 240-248. [15] Fergus J L B, Johnsen S, Osborn K J. A unique apposition compound eye in the mesopelagic hyperiid amphipod Paraphronima gracilis[J]. Current Biology, 2015, 25(4): 473-478. [16] Makarova A A, Meyer-Rochow V B, Polilov A A. Morphology and scaling of compound eyes in the smallest beetles (Coleoptera: Ptiliidae)[J]. Arthropod Structure & Development, 2019, 48: 83-97. [17] Chakravarthi A, Baird E, Dacke M, et al.Spatial vision in Bombus terrestris[J]. Frontiers in Behavioral Neuroscience, 2016, 10: 17. doi: 10.3389/fnbeh.2016.00017. [18] Macuda T, Gegear R J, Laverty T M, et al.Behavioural assessment of visual acuity in bumblebees (Bombus impatiens)[J]. The Journal of Experimental Biology, 2001, 204(3): 559-564. [19] Srinivasan M V, Lehrer M.Spatial acuity of honeybee vision and its spectral properties[J]. Journal of Comparative Physiology A, 2004, 162: 159-172. [20] Caves E M, Brandley N C, Johnsen S.Visual acuity and the evolution of signals[J]. Trends in Ecology & Evolution, 2018, 33(5): 358-372. [21] Kirwan J D, Graf J, Smolka J, et al. Correction: low-resolution vision in a velvet worm (onychophora)[J]. Journal of Experimental Biology, 2018, 221(13): jeb186551. doi: 10.1242/jeb.186551. [22] Caves E M, Frank T M, Johnsen S.Spectral sensitivity, spatial resolution and temporal resolution and their implications for conspecific signalling in cleaner shrimp[J]. Journal of Experimental Biology, 2016, 219(4): 597-608. [23] Pettigrew J D, Dreher B, Hopkins C S, et al.Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: Implications for visual acuity[J]. Brain, behavior and evolution, 1988, 32(1): 39-56. [24] Pettigrew J D, Manger P R.Retinal ganglion cell density of the black rhinoceros (Diceros bicornis): calculating visual resolution[J]. Visual Neuroscience, 2008, 25(2): 215-220. [25] Northmore D P M, Oh D J, Celenza M A. Acuity and contrast sensitivity of the bluegill sunfish and how they change during optic nerve regeneration[J]. Visual Neuroscience, 2007, 24(3): 319-331. [26] Warrant E J, Nilsson D E.Absorption of white light in photoreceptors[J]. Vision Research, 1998, 38(2): 195-207. [27] 金珊, 孙晓玲, 陈宗懋, 等. 不同茶树品种对假眼小绿叶蝉的抗性[J]. 中国农业科学, 2012, 45(2): 255-265. Jin S, Sun X L, Chen Z M, et al.Resistance of different tea cultivars to Empoasca vitis Göthe[J]. Scientia Agricultura Sinica, 2012, 45(2): 255-265. [28] Bian L, Cai X M, Luo Z X, et al.Foliage intensity is an important cue of habitat location for Empoasca onukii[J]. Insects, 2020, 11(7): 426. doi: 10.3390/insects11070426. [29] 边磊, 孙晓玲, 陈宗懋. 假眼小绿叶蝉的日飞行活动性及成虫飞行能力的研究[J]. 茶叶科学, 2014, 34(3): 248-252. Bian L, Sun X L, Chen Z M.Studies on daily flight activity and adult flight capacity of Empoasca vitis Göthe[J]. Journal of Tea Science, 2014, 34(3): 248-252. [30] Caves E M, Johnsen S.Acuityview: an R package for portraying the effects of visual acuity on scenes observed by an animal[J]. Methods in Ecology and Evolution, 2018, 9(3): 793-797. [31] Klinkhamer P G L. Plant allometry: the scaling of form and process[J]. Trends in Ecology and Evolution, 1995, 10(3): 134. doi: 10.1016/S0169-5347(00)89015-1. [32] 谭济才. 茶树病虫防治学[M]. 北京: 中国农业出版社, 2011. Tan J C.Tea plant disease and pest control[M]. Beijing: China Agriculture Press, 2011. [33] Straw A D, Warrant E J, O’Carroll D C. A 'bright zone' in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity[J]. Journal of Experimental Biology, 2006, 209(21): 4339-4354. [34] Dyer A G, Paulk A C, Reser D H.Colour processing in complex environments: insights from the visual system of bees[J]. Proceedings of the Royal Society B: Biological Sciences, 2011, 278(1707): 952-959. [35] Cronin T W, Johnsen S, Marshall N J, et al.Visual ecology[M]. New Jersey: Princeton University Press, 2014. |