Journal of Tea Science ›› 2023, Vol. 43 ›› Issue (3): 399-410.doi: 10.13305/j.cnki.jts.2023.03.012
• Research Paper • Previous Articles Next Articles
ZHOU Jihong, CHEN Wei, DING Lejia, WANG Yuefei*
Received:
2022-12-12
Revised:
2023-04-27
Online:
2023-06-15
Published:
2023-06-29
CLC Number:
ZHOU Jihong, CHEN Wei, DING Lejia, WANG Yuefei. Regulatory Effect and Mechanism of EGCG on Metabolic Disorders in High-fructose Diet Mice[J]. Journal of Tea Science, 2023, 43(3): 399-410.
[1] 任志斌, 徐培培, 张倩, 等. 2019—2021年中国11~14岁儿童甜食摄入量与近视的关系[J]. 卫生研究, 2022, 51(5): 713-719. Ren Z B, Xu P P, Zhang Q, et al.Relationship between sugary food intake and myopia in 11-14 years old Chinese children in 2019-2021[J]. Journal of Hygiene Research, 2022, 51(5): 713-719. [2] Hattori H, Hanai Y, Oshima Y, et al.Excessive intake of high-fructose corn syrup drinks induces impaired glucose tolerance[J]. Biomedicines, 2021, 9(5): 541. doi: 10.3390/biomedicines9050541. [3] 张琪, 高惠英. 肥胖相关因素介导免疫炎症机制在痛风中的研究进展[J]. 中国临床研究, 2021, 34(11): 1574-1577. Zhang Q, Gao H Y.Progress on obesity-related factors mediating immune-inflammatory mechanisms in gout[J]. Chinese Journal of Clinical Research, 2021, 34(11): 1574-1577. [4] 张芹, 周中凯, 任晓冲. 高通量测序技术研究高糖饮食对小鼠肠道菌群的影响[J]. 食品安全质量检测学报, 2015, 6(5): 1776-1782. Zhang Q, Zhou Z K, Ren X C.Comparision of intestinal microbiota in mice with normal and high-sugar diet using Miseq high-throughput sequencing[J]. Journal of Food Safety & Quality, 2015, 6(5): 1776-1782. [5] Janevski M, Ratnayake S, Siljanovski S, et al.Fructose containing sugars modulate mRNA of lipogenic genes ACC and FAS and protein levels of transcription factors ChREBP and SREBP1c with no effect on body weight or liver fat[J]. Food & Function, 2012, 3(2): 141-149. [6] Softic S, Meyer J G, Wang G X, et al.Dietary sugars alter hepatic fatty acid oxidation [7] Ren Z K, Yang Z Y, Lu Y, et al.Anti-glycolipid disorder effect of epigallocatechin3gallate on high-fat diet and STZ-induced T2DM in mice[J]. Molecular Medicine Reports, 2020, 21(6): 2475-2483. [8] Xu L L, Li W W, Chen Z Q, et al.Inhibitory effect of epigallocatechin-3- [9] Payne A, Nahashon S, Taka E, et al.Epigallocatechin-3-gallate (EGCG): new therapeutic perspectives for neuroprotection, aging, and neuroinflammation for the modern age[J]. Biomolecules, 2022, 12(3): 371. doi: 10.3390/biom12030371. [10] Wang M, Zhong H, Zhang X, et al.EGCG promotes PRKCA expression to alleviate LPS-induced acute lung injury and inflammatory response[J]. Scientific Reports, 2021, 11(1): 11014. doi: 10.1038/s41598-021-90398-x. [11] Friedrich M, Petzke K J, Raederstorff D, et al.Acute effects of epigallocatechin gallate from green tea on oxidation and tissue incorporation of dietary lipids in mice fed a high-fat diet[J]. International Journal of Obesity, 2012, 36(5): 735-743. [12] Sae-tan S, Grove K A, Lambert J D. Weight control and prevention of metabolic syndrome by green tea[J]. Pharmacological Research, 2011, 64(2): 146-154. [13] 周继红, 余月儿, 丁乐佳, 等. 抹茶对高脂饮食诱导的小鼠肝脏脂质积累和炎症反应的保护作用及机制[J]. 浙江大学学报(农业与生命科学版), 2022, 48(4): 525-532. Zhou J H, Yu Y E, Ding L J, et al.Protective effect and mechanism of matcha on liver lipid accumulation and inflammatory response induced by high-fat diet in mice[J]. Journal of Zhejiang University: Agriculture and Life Sciences, 2022, 48(4): 525-532. [14] 周继红. EGCG对高脂饮食诱导肥胖小鼠棕色脂肪活性及下丘脑炎症通路的调控作用研究[D]. 杭州: 浙江大学, 2019. Zhou J H.Effects of EGCG on brown adipose tissue activation and hypothalamic inflammatory pathway in obese mice fed a high-fat diet[D]. Hangzhou: Zhejiang University, 2019. [15] Rodrigues N, Peng M, Oey I, et al.Glycaemic, uricaemic and blood pressure response to beverages with partial fructose replacement of sucrose[J]. European Journal of Clinical Nutrition, 2018, 72(12): 1717-1723. [16] Gao T L, Tian C Y, Tian G, et al.Excessive fructose intake inhibits skeletal development in adolescent rats [17] Hernandez-Diazcouder A, Romero-Nava R, Carbo R, et al.High fructose intake and adipogenesis[J]. International Journal of Molecular Sciences, 2019, 20(11): 2787. doi: 10.3390/ijms20112787. [18] 徐春花, 何卓俊, 曾立, 等. 肥胖的发病机制以及药物治疗研究概况[J]. 中国疗养医学, 2021, 30(2): 131-135. Xu C H, He Z J, Zeng L, et al.Research overview of the pathogenesis of obesity and drug therapy[J]. Chinese Journal of Convalescent Medicine, 2021, 30(2): 131-135. [19] Seo K, Yokoyama W, Kim H.Comparison of polyphenol-rich wine grape seed flour-regulated fecal and blood microRNAs in high-fat, high-fructose diet-induced obese mice[J]. Journal of Functional Foods, 2020, 73: 104147. doi: 10.1016/j.jff.2020.104147. [20] Han X, Li W F, Huang D, et al.Polyphenols from hawthorn peels and fleshes differently mitigate dyslipidemia, inflammation and oxidative stress in association with modulation of liver injury in high fructose diet-fed mice[J]. Chemico-Biological Interactions, 2016, 257: 132-140. [21] Yamamoto M, Yoshioka Y, Kitakaze T, et al.Preventive effects of black soybean polyphenols on non-alcoholic fatty liver disease in three different mouse models[J]. Food & Function, 2022, 13(2): 1000-1014. [22] 程倩. 黄酮预防代谢综合征的功能评价与作用机理研究[D]. 北京: 中国农业大学, 2014. Cheng Q.Functional evaluation of different flavonoids in the prevention of metabolic syndrome and their mechanisms[D]. Beijing: China Agricultural University, 2014. [23] Mi Y, Qi G, Fan R, et al.EGCG ameliorates diet-induced metabolic syndrome associating with the circadian clock[J]. Biochimica et Biophysica Acta-Molecular Basis of Disease, 2017, 1863(6): 1575-1589. [24] Febbraio M A, Karin M."Sweet death": fructose as a metabolic toxin that targets the gut-liver axis[J]. Cell Metabolism, 2021, 33(12): 2316-2328. [25] Varol C, Zigmond E, Jung S.Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria[J]. Nature Reviews Immunology, 2010, 10(6): 415-426. [26] Nagarajan S R, Cross E, Sanna F, et al.Dysregulation of hepatic metabolism with obesity: factors influencing glucose and lipid metabolism[J]. Proceedings of the Nutrition Society, 2022, 81(1): 1-11. [27] Jones N, Blagih J, Zani F, et al.Fructose reprogrammes glutamine-dependent oxidative metabolism to support LPS-induced inflammation[J]. Nature Communication, 2021, 12(1): 1209. doi: 10.1038/s41467-021-21461-4. [28] Olofsson C, Eriksson M, Helin A C B, et al. Effects of acute fructose loading on markers of inflammation: a pilot study[J]. Nutrients, 2021, 13(9): 3110. doi: 10.3390/nu13093110. [29] Singh S, Sharma A, Guru B, et al.Fructose-mediated NLRP3 activation induces inflammation and lipogenesis in adipose tissue[J]. The Journal of Nutritional Biochemistry, 2022, 107: 109080. doi: 10.1016/j.jnutbio.2022.109080. [30] Tu Y F, Wang L, Rong Y, et al.Hepatoenteric recycling is a new disposition mechanism for orally administered phenolic drugs and phytochemicals in rats[J]. Elife, 2021, 10: e58820. doi: 10.7554/eLife.58820. [31] Li H L, Xie Z Y, Zhang Y, et al. [32] Hu M Y, Zhang L, Ruan Z, et al.The regulatory effects of citrus peel powder on liver metabolites and gut flora in mice with non-alcoholic fatty liver disease (NAFLD)[J]. Foods, 2021, 10(12): 3022. doi: 10.3390/foods10123022. [33] Wilkinson N J, Peng L N, Doran J E, et al.Examination of the interplay between membrane tension and the tight junction protein, ZO-1[J]. The FASEB Journal, 2022, 36(s1): R4270. doi: 10.1096/fasebj.2022.36.S1.R4270. [34] 伍振辉, 孟娴, 胡佳伟, 等. TLR4-MyD88-NF-kB信号通路与肝炎-肝纤维化-肝癌轴相关性研究进展[J]. 国际药学研究杂志, 2017, 44(5): 396-401. Wu Z H, Meng X, Hu J W, et al.Research progress on the correlation between TLR4-MyD88-NF-κB signalling pathways and the hepatic inflammation-fibrosis-cancer axis[J]. Journal of International Pharmaceutical Research, 2017, 44(5): 396-401. [35] Wu C P, Bi Y J, Liu D M, et al.Hsa-miR-375 promotes the progression of inflammatory bowel disease by upregulating TLR4[J]. European Review for Medical and Pharmacological Sciences, 2019, 23(17): 7543-7549. [36] Mir H, Meena A S, Chaudhry K K, et al.Occludin deficiency promotes ethanol-induced disruption of colonic epithelial junctions, gut barrier dysfunction and liver damage in mice[J]. Biochimica et Biophysica Acta, 2016, 1860(4): 765-774. [37] Wei R, Liu X, Wang Y, et al.(-)-Epigallocatechin-3-gallate mitigates cyclophosphamide-induced intestinal injury by modulating the tight junctions, inflammation and dysbiosis in mice[J]. Food & Function, 2021, 12(22): 11671-11685. [38] Dey P, Olmstead B D, Sasaki G Y, et al.Epigallocatechin gallate but not catechin prevents nonalcoholic steatohepatitis in mice similar to green tea extract while differentially affecting the gut microbiota[J]. The Journal of Nutritional Biochemistry, 2020, 84: 108455. doi: 10.1016/j.jnutbio.2020.108455. [39] Yang N, Shang Y X.Epigallocatechin gallate ameliorates airway inflammation by regulating Treg/Th17 imbalance in an asthmatic mouse model[J]. International Immunopharmacology, 2019, 72: 422-428. [40] Li H X, Qiao C, Zhao L Y, et al.Epigallocatechin-3-gallate reduces neutrophil extracellular trap formation and tissue injury in severe acute pancreatitis[J]. Journal of Leukocyte Biology, 2022, 112(6): 1427-1443. |
[1] | SUN Ying, CHEN Xin, YANG Hua, YING Jian, SHAO Danqing, LÜ Xiaohua, XIAO Jie, CHEN Zhixiong, LI Song, QIN Junjie, ZHENG Bin, GAO Jianshe. Clinical Trial on the Effect of Drinking Jinhua Xiangyuan Tea for 3 Months on the Improvement of Glucose and Lipid Metabolism in A Small Sample Hyperlipidemia Population [J]. Journal of Tea Science, 2022, 42(4): 561-576. |
[2] | ZHOU Shaofeng, QIAN Yunfei, ZHAO Zhen, CHEN Xuan, LI Xinghui. Effect of the Tea with Different Degrees of Fermentation on the Formation of Tea Scum [J]. Journal of Tea Science, 2022, 42(1): 76-86. |
[3] | WU Xin, SONG Feihu, PEI Yongsheng, ZHU Guanyu, JIANG Lebing, NING Wenkai, LI Zhenfeng, LIU Benying. Study on the Tea Quality Changes and Predictions during the Microwave Fixation Process by Machine Vision [J]. Journal of Tea Science, 2021, 41(6): 854-864. |
[4] | WANG Shenglin, YANG Chongshan, LIU Zhongyuan, LIU Shanjian, DONG Chunwang. Rapid Detection Method of Tea Polyphenol Content in Black Tea Fermentation Based on Electrical Properties [J]. Journal of Tea Science, 2021, 41(2): 251-260. |
[5] | LU Li, CHENG Xi, ZHANG Bo, SHEN Xiaoxia, LIU Yan, XIONG Li, YUAN Xiao, LI Yuanhua, LI Xinghui. Establishment of Predictive Model for Quantitative Analysis of Tea Polyphenols and Caffeine of Souchong by Near Infrared Spectroscopy [J]. Journal of Tea Science, 2020, 40(5): 689-695. |
[6] | WANG Shaomei, LI Xiaojun, SONG Wenming, PAN Lianyun. Research Progress of Gallic Acid in Puer Tea and Its Improvement of Diet Induced Glucose and Lipid Metabolism Disorder [J]. Journal of Tea Science, 2020, 40(4): 431-440. |
[7] | YAO Min, LI Daxiang, XIE Zhongwen. Recent Advance on Anti-cardiovascular Inflammation of Major Characteristic Compounds in Tea [J]. Journal of Tea Science, 2020, 40(1): 1-14. |
[8] | ZHOU Fang, OUYANG Jian, HUANG Jian'an, LIU Zhonghua. Advances in Research on the Regulation of Tea Polyphenols and Effects on Intestinal Flora [J]. Journal of Tea Science, 2019, 39(6): 619-630. |
[9] | ZHANG Shuping, WANG Yuefei, XU Ping. Prevention of Tea Polyphenols on Atherosclerosis and Relative Mechanisms [J]. Journal of Tea Science, 2019, 39(3): 231-246. |
[10] | ZHU Lin, WU Long, CHEN Xiaoqiang, CHEN Xueling, WU Zhengqi, SHI Yong. Interaction between Tea Polyphenols and Polysaccharides: Progress in Research on Mechanism and Function [J]. Journal of Tea Science, 2019, 39(2): 203-210. |
[11] | WU Wenliang, LIU Zhonghua, LIN Yong, HUANG Jian′an, ZUO Gaolong, TENG Cuiqin, LONG Zhirong, QIU Ruijin, CAO Zhonghuan. Alleviative Effects of Aged Liupao Tea on Lipid Metabolism and Liver Injury in Hyperlipidemic Mice [J]. Journal of Tea Science, 2018, 38(4): 430-438. |
[12] | WU Genliang, HOU Aixiang, LI Ke, LI Zongjun. Effects of Polyphenols of Old Fu Brick Tea on the Elderly Intestinal Flora [J]. Journal of Tea Science, 2018, 38(3): 319-330. |
[13] | SHI Chunlin, LI Xiaohuan, HUANG Xiangxiang. Effects of Green Tea Polyphenols on Oxidative Stress Induced by Passive Smoking in Mice Lung [J]. Journal of Tea Science, 2018, 38(2): 212-220. |
[14] | PAN Lianyun, LU Yan, GONG Yushun. The Mechanism of the Lipid-lowering Effect of Tea by Regulating the SREBP [J]. Journal of Tea Science, 2018, 38(1): 102-111. |
[15] | LEI Liping, ZHU Yuehua, ZHANG Jian, YANG Wenge, LI Puyou, LIU Yanjie, QIAN Yunxia. Effects of Tea Polyphenols on Quality and Microorganisms of Pseudosciaena crocea during Iced Storage [J]. Journal of Tea Science, 2017, 37(5): 523-531. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|