[1] 严俊, 林刚, 赖国亮, 等. 测色技术在炒青绿茶品质评价中的应用研究[J]. 食品科学, 1996, 17(7): 21-24. Yan J, Lin G, Lai G L, et al.Study on the application of color measurement technology in evaluating the quality of roasted green tea[J]. Food Science, 1996, 17(7): 21-24. [2] 蒋帆, 乔欣, 郑华军, 等. 基于高光谱分析技术的机炒龙井茶等级识别方法[J]. 农业工程学报, 2011, 27(7): 343-348. Jiang F, Qiao X, Zheng H J, et al.Grade discrimination of machine-fried Longjing tea based on hyperspectral technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(7): 343-348. [3] 林新, 牛智有. 基于近红外光谱茶叶种类的快速识别[J]. 华中农业大学学报, 2008, 27(2): 326-330. Lin X, Niu Z Y.Fast discrimination of tea species based on near infrared spectroscopy (NIRS)[J]. Journal of Huazhong Agricultural University, 2008, 27(2): 326-330. [4] 陈孝敬, 吴迪, 何勇, 等. 基于多光谱图像颜色特征的茶叶分类研究[J]. 光谱学与光谱分析, 2008, 28(11): 2527-2530. Chen X J, Wu D, He Y, et al.Study on discrimination of tea based on color of multispectral image[J]. Spectroscopy and Spectral Analysis, 2008, 28(11): 2527-2530. [5] 尹志, 胡冬. 茶叶感官审评方法中存在的若干问题分析[J]. 茶叶, 2015, 41(1): 15-18. Yin Z, Hu D.A discussion on the methodology of tea sensory assessment[J] Journal of Tea, 2015, 41(1): 15-18. [6] Krizhevsky A, Sutskever I, Hinton G E.Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [7] Simonyan K, Zisserman A.Very deep convolutional networks for large-scale image recognition[J]. arXiv, 2014, 1409: 1556. doi: 10.48550/arXiv.1409.1556. [8] He K, Zhang X, Ren S, et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778. [9] Zhang H, Patel V M.Densely connected pyramid dehazing network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 3194-3203. [10] Szegedy C, Liu W, Jia Y, et al.Going deeper with convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 1-9. [11] Girshick R.Fast r-cnn[C]//Proceedings of the IEEE international conference on computer vision. 2015: 1440-1448. [12] Girshick R, Donahue J, Darrell T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2014: 580-587. [13] Long J, Shelhamer E, Darrell T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2015: 3431-3440. [14] Zhao H, Shi J, Qi X, et al.Pyramid scene parsing network[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 2881-2890. [15] 杨奉水, 王志博, 汪为通, 等. 人工智能识别茶树病虫害的应用与展望[J]. 中国茶叶, 2022, 44(6): 1-6. Yang F S, Wang Z B, Wang W T, et al.Application and prospect of artificial intelligence identification of tea pests and diseases[J]. China Tea, 2022, 44(6): 1-6. [16] 张怡, 赵珠蒙, 王校常, 等. 基于ResNet卷积神经网络的绿茶种类识别模型构建[J]. 茶叶科学, 2021, 41(2): 261-271. Zhang Y, Zhao Z M, Wang J C, et al.Construction of green tea recognition model based on ResNet convolutional neural network[J]. Journal of Tea Science, 2021, 41(2): 261-271. [17] 段瑞玲, 李庆祥, 李玉和. 图像边缘检测方法研究综述[J]. 光学技术, 2005, 31(3): 415-419. Duan R L, Li Q X, Li Y H.Summary of image edge detection[J]. Optical Technique, 2005, 31(3): 415-419. [18] 李文举, 苏攀, 崔柳. 基于随机扰动的过拟合抑制算法[J]. 计算机仿真, 2022, 39(5): 134-138. Li W J, Su P, Cui L.Over-fitting suppression algorithm based on random perturbation[J]. Computer Simulation, 2022, 39(5): 134-138. [19] Shijie J, Ping W, Peiyi J, et al.Research on data augmentation for image classification based on convolution neural networks[C]//2017 Chinese automation congress (CAC). IEEE, 2017: 4165-4170. [20] Roth H R, Lee C T, Shin H C, et al.Anatomy-specific classification of medical images using deep convolutional nets[C]//2015 IEEE 12th international symposium on biomedical imaging (ISBI). IEEE, 2015: 101-104. [21] 司念文, 常禾雨, 张文林, 等. 基于注意力机制的卷积神经网络可视化方法[J]. 信息工程大学学报, 2021, 22(3): 257-263. Si N W, Chang H Y, Zhang W L, et al.Visualization method of convolutional neural network based on attention mechanism[J]. Journal of Information Engineering University, 2021, 22(3): 257-263. [22] 赵洋, 梁迎春, 许军, 等. 改进ResNet18网络模型的花卉识别[J]. 计算机技术与发展, 2022, 32(7): 167-172. Zhao Y, Liang Y C, Xu J, et al.Flower recognition based on improved ResNet18 network mode[J]. Computer Technology and Development, 2022, 32(7): 167-172. [23] 何彦弘, 徐怡宁, 傅嘉琪, 等. 基于改进Resnet18的垃圾分类收运监管方法研究[J]. 软件工程, 2023, 26(1): 24-33. He Y H, Xu Y N, Fu J Q, et al.Waste classified collection and transportation supervision approach based on improved Resnet18[J]. Software Engineering, 2023, 26(1): 24-33. [24] 边柯橙, 杨海军, 路永华. 深度学习在农业病虫害检测识别中的应用综述[J]. 软件导刊, 2021, 20(3): 26-33. Bian K C, Yang H J, Lu Y H.Application review of deep learning in detection and identification of agricultural pests and diseases[J]. Software Guide, 2021, 20(3): 26-33. [25] Selvaraju R R, Chattopadhyay P, Elhoseiny M, et al.Choose your neuron: incorporating domain knowledge through neuron-importance[C]//Proceedings of the European conference on computer vision (ECCV). 2018: 526-541. [26] Selvaraju R R, Cogswell M, Das A, et al.Grad-cam: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE international conference on computer vision. 2017: 618-626. [27] Zhou B, Khosla A, Lapedriza A, et al.Learning deep features for discriminative localization[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 2921-2929. [28] 司念文, 张文林, 屈丹, 等. 卷积神经网络表征可视化研究综述[J]. 自动化学报, 2022, 48(8): 1890-1920. Si N W, Zhang W L, Qu D, et al.Representation visualization of convolutional neural networks: asurvey[J]. Acta Automatica Sinica, 2022, 48(8): 1890-1920. [29] Jung Y.Multiple predicting K-fold cross-validation for model selection[J]. Journal of Nonparametric Statistics, 2018, 30(1): 197-215. [30] 王文明, 肖宏儒, 陈巧敏, 等. 基于图像处理的茶叶智能识别与检测技术研究进展分析[J]. 中国农机化学报, 2020, 41(7): 178-184. Wang W M, Xiao H R, Chen Q M, et al.Research progress analysis of tea intelligent recognition and detection technology based on image processing[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(7): 178-184. [31] 刘自强, 周铁军, 傅冬和, 等. 基于颜色和形状的鲜茶叶图像特征提取及在茶树品种识别中的应用[J]. 江苏农业科学, 2021, 49(12): 168-172. Liu Z Q, Zhou T J, Fu D H, et al.Study on image feature extraction of fresh tea based on color and shape and its application in tea variety recognition[J]. Jiangsu Agricultural Sciences, 2021, 49(12): 168-172. [32] Liu Y, Zhong Y, Fei F, et al.Scene classification based on a deep random-scale stretched convolutional neural network[J]. Remote Sensing, 2018, 10(3): 444. doi: 10.3390/rs10030444. [33] Chen P, Liu S, Zhao H, et al.Gridmask data augmentation[J]. arXiv, 2020, 2001: 04086. doi: 10.48550/arXiv.2001.04086. [34] Howard A G, Zhu M, Chen B, et al.Mobilenets: efficient convolutional neural networks for mobile vision applications[J]. arXiv, 2017, 1704: 04861. doi: 10.48550/arXiv.1704.04861. [35] Chen L, Chen J, Hajimirsadeghi H, et al.Adapting grad-cam for embedding networks[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2020: 2794-2803. [36] 张家钧, 唐云祁, 杨智雄. 基于改进残差网络和数据增强的鞋型识别算法[J]. 电子测量技术, 2021, 44(19): 139-147. Zhang J J, Tang Y Q, Yang Z X.Shoe type recognition algorithm based on improved residual network and data augmentation[J]. Electronic Measurement Technology, 2021, 44(19): 139-147. [37] 杨继增, 关胜晓. 面向CNN的类激活映射算法研究[J]. 信息技术与网络安全, 2022, 41(1): 63-68. Yang J Z, Guan S X.A class activation mapping algorithm for CNN[J]. Information Technology and Network Security, 2022, 41(1): 63-68. |