Journal of Tea Science ›› 2023, Vol. 43 ›› Issue (4): 553-566.doi: 10.13305/j.cnki.jts.2023.04.007
• Research Paper • Previous Articles Next Articles
YANG Gaozhong1,2, SHI Jiang1, ZHANG Yue1, PENG Qunhua1, LIN Zhi1,*, LÜ Haipeng1,*
Received:
2023-04-17
Revised:
2023-05-14
Online:
2023-08-15
Published:
2023-08-24
CLC Number:
YANG Gaozhong, SHI Jiang, ZHANG Yue, PENG Qunhua, LIN Zhi, LÜ Haipeng. Changes in Chemical Composition of Zijuan Tea under Anaerobic Treatment Conditions and Their Effects on in vitro ACE Activity[J]. Journal of Tea Science, 2023, 43(4): 553-566.
[1] Zhou B, Carrillo-larco R M, Danaei G, et al. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants[J]. The Lancet, 2021, 398(10304): 957-980. [2] Li X C, Zhang J, Zhuo J L.The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases[J]. Pharmacological Research, 2017, 125: 21-38. [3] Wu J, Liao W, Udenigwe C C.Revisiting the mechanisms of ACE inhibitory peptides from food proteins[J]. Trends in Food Science & Technology, 2017, 69: 214-219. [4] Yang G Z, Meng Q, Shi J, et al.Special tea products featuring functional components: health benefits and processing strategies[J]. Comprehensive Reviews in Food Science and Food Safety, 2023, 22(3): 1686-1721. [5] Shi J, Simal-gandara J, Mei J, et al. Insight into the pigmented anthocyanins and the major potential co-pigmented flavonoids in purple-coloured leaf teas[J]. Food Chemistry, 2021, 363: 130278. doi: 10.1016/j.foodchem.2021.130278. [6] Dong J, Xu X, Liang Y, et al.Inhibition of angiotensin converting enzyme (ACE) activity by polyphenols from tea ( [7] Kurita I, Maeda-yamamoto M, Tachibana H, et al. Antihypertensive effect of Benifuuki tea containing [8] Fan W D, Zong H R, Zhao T, et al.Bioactivities and mechanisms of dietary proanthocyanidins on blood pressure lowering: a critical review of [9] Ockermann P, Headley L, Lizio R, et al.A review of the properties of anthocyanins and their influence on factors affecting cardiometabolic and cognitive health[J]. Nutrients, 2021, 13(8): 2831. doi: 10.3390/nu13082831. [10] 包云秀, 夏丽飞, 李友勇, 等. 茶树新品种‘紫娟’[J]. 园艺学报, 2008, 35(6): 934. Bao Y X, Xia L F, Li Y Y, et al.A new tea tree cultivar ‘Zjuan’[J]. Acta Horticulturae Sinica, 2008, 35(6): 934. [11] Hinton T, Johnston G A R. GABA-enriched teas as neuro-nutraceuticals[J]. Neurochemistry International, 2020, 141: 104895. doi: 10.1016/j.neuint.2020.104895. [12] Dai W D, Xie D C, Lin Z, et al.A nontargeted and targeted metabolomics study on the dynamic changes in metabolite levels during the anaerobic treatment of [13] Chen Q, Zhang Y M, Tao M M, et al.Comparative metabolic responses and adaptive strategies of tea leaves ( [14] Yin Z T, Yan R Y, Jiang Y S, et al.Identification of peptides in Qingke baijiu and evaluation of its angiotensin converting enzyme (ACE) inhibitory activity and stability[J]. Food Chemistry, 2022, 395: 133551. doi: 10.1016/j.foodchem.2022.133551. [15] Wei D, Fan W L, Xu Y.Identification of water-soluble peptides in distilled spent grain and its angiotensin converting enzyme (ACE) inhibitory activity based on UPLC-Q-TOF-MS and proteomics analysis[J]. Food Chemistry, 2021, 353: 129521. doi: 10.1016/j.foodchem.2021.129521. [16] Yang C, Hu Z Y, Lu M L, et al.Application of metabolomics profiling in the analysis of metabolites and taste quality in different subtypes of white tea[J]. Food Research International, 2018, 106: 909-919. [17] Da Silva T B V, Castilho P A, De Sá-nakanishi A B, et al. The inhibitory action of purple tea on [18] 杨高中, 彭群华, 张悦, 等. 厌氧处理对不同类型茶叶的氨基酸组成及生物活性的影响[J]. 茶叶科学, 2022, 42(2): 222-232. Yang G Z, Peng Q H, Zhang Y, et al.Effects of anaerobic treatment on amino acid composition and biological activities of different type teas[J]. Journal of Tea Science, 2022, 42(2): 222-232. [19] Wang Y, Kan Z, Thompson H J, et al.Impact of six typical processing methods on the chemical composition of tea leaves using a single [20] Yu F, Chen C, Chen S N, et al.Dynamic changes and mechanisms of organic acids during black tea manufacturing process[J]. Food Control, 2022, 132: 108535. doi: 10.1016/j.foodcont.2021.108535. [21] 吕海鹏, 杨停, 梁名志, 等. “紫娟”茶中的EGCG3"Me成分研究[J]. 现代食品科技, 2014, 30(9): 286-289, 296. Lü H P, Yang T, Liang M Z, et al.Study of EGCG3"Me content in Zijuan tea[J]. Modern Food Science and Technology, 2014, 30(9): 286-289, 296. [22] 时鸿迪, 王邦政, 李乾, 等. 不同加工工艺下‘紫娟’茶品质的比较[J]. 中国农学通报, 2020, 36(34): 142-147. Shi H D, Wang B Z, Li Q, et al.The quality of ‘Zijuan’ tea under different processing techniques: a comparative analysis[J]. Chinese Agricultural Science Bulletin, 2020, 36(34): 142-147. [23] Lü H P, Dai W D, Tan J F, et al.Identification of the anthocyanins from the purple leaf coloured tea cultivar Zijuan ( [24] Tu J, Liu G H, Jin Y C, et al.Enrichment of [25] Wu Y, Han Z S, Wen M C, et al.Screening of [26] Diana M, Quílez J, Rafecas M.Gamma-aminobutyric acid as a bioactive compound in foods: a review[J]. Journal of Functional Foods, 2014, 10: 407-420. [27] Liu Z, Bruins M E, Ni L, et al.Green and black tea phenolics: bioavailability, transformation by colonic microbiota, and modulation of colonic microbiota[J]. Journal of Agricultural and Food Chemistry, 2018, 66(32): 8469-8477. [28] Wang X M, Chen H X, Fu X G, et al.A novel antioxidant and ACE inhibitory peptide from rice bran protein: biochemical characterization and molecular docking study[J]. LWT, 2017, 75: 93-99. doi: 10.1016/j.lwt.2016.08.047. [29] Shih Y H, Chen F A, Wang L F, et al.Discovery and study of novel antihypertensive peptides derived from cassia obtusifoliaseeds[J]. Journal of Agricultural and Food Chemistry, 2019, 67(28): 7810-7820. [30] Mirzaei M, Mirdamadi S, Ehsani M R, et al.Production of antioxidant and ACE-inhibitory peptides from [31] Shukor N A, Van Camp J, Gonzales G B, et al.Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: a study of structure activity relationships[J]. Journal of Agricultural and Food Chemistry, 2013, 61(48): 11832-11839. doi:10.1021/jf404641v. |
[1] | LI Yan, LIN Yongfeng, LIU Wenmei, ZOU Zehua, LIU Guangming, LIU Qingmei. Present Status and Development Trends of Research on Tea Polysaccharides [J]. Journal of Tea Science, 2023, 43(4): 447-459. |
[2] | TANG Lu, LI Changle, GE Yue, WANG Pu, ZHAO Hua, WANG Mingle, WANG Yu, GUO Fei, NI Dejiang. Diversity Analysis of Leaf Phenotype and Biochemical Components in Tea Local Population Resources [J]. Journal of Tea Science, 2023, 43(4): 473-488. |
[3] | TANG Ziyi, DU Yue, YANG Hongbin, LI Xinghui, YU Youben, WANG Weidong. Changes of Endogenous Hormone Contents and Expression Analysis of Related Genes in Leaves of Tea Plants Under Heat and Drought Stresses [J]. Journal of Tea Science, 2023, 43(4): 489-500. |
[4] | HAN Haidong, ZHOU Liuting, HUANG Xiaoyun, YU Chengran, HUANG Xiusheng. The Characteristics of Fungal Community Structure in Tea Rhizosphere Soil Interplanted with Ganoderma lucidum Based on High-throughput Sequencing Technology [J]. Journal of Tea Science, 2023, 43(4): 513-524. |
[5] | SUN Yue, LIU Mengyue, GAO Chenxi, WU Quanjin, CAO Shixian, YU Shuntian, CHEN Zhidan, JIN Shan, SUN Weijiang. Study on the Differences of Leaf Color and Volatiles of Different Insect-resistance Tea Cultivars [J]. Journal of Tea Science, 2023, 43(4): 525-543. |
[6] | SHENG Zheng, DU Wenkai, WANG Chongchong, ZHANG Boan, ZHANG Haihua, DU Qizhen. Effect of Tea Polyphenols on the Determination of Reducing Sugar in Tea Food [J]. Journal of Tea Science, 2023, 43(4): 567-575. |
[7] | GONG Mingxiu, YUAN Yiwei, ZHANG Yifan, YE Jiangcheng, GUO Li, LI Xiaojun, HUANG Hao, MAO Yuxiao, ZHAO Yun, ZHAO Jin. Effect of Jiukeng Longjing Tea on SREBPs Signaling Pathway and Gut Microbiota Regulation in High-fat Diet C57BL/6 Mice with Hepatic Steatosis [J]. Journal of Tea Science, 2023, 43(4): 576-592. |
[8] | TONG Yan, HUANG Hui, WANG Yuhua. Analysis of Codon Usage Bias and Phylogenesis in the Chloroplast Genome of Ancient Tea Tree Camellia taliensis in Forest-tea Garden [J]. Journal of Tea Science, 2023, 43(3): 297-309. |
[9] | LI Li, LUO Shengcai, WANG Feiquan, LI Xiangru, FENG Hua, SHI Yutao, YE Jianghua, LIU Fei, ZHAO Jialin, LI Shuying, ZHANG Bo. Genetic Analysis and Marker Development for Wuyi Tea (Camellia sinensis, Synonym: Thea bohea L.) Based on GBS-SNP [J]. Journal of Tea Science, 2023, 43(3): 310-324. |
[10] | LI Jiasi, LIU Yingqing, ZHANG Yongheng, ZHANG Ying'ao, XIAO Yezi, LIU Lu, YU Youben. Identification of Transcription Factors Interacting with CsNCED2 Promoter and Their Response to Abiotic Stress [J]. Journal of Tea Science, 2023, 43(3): 325-334. |
[11] | SHEN Ruihan, MA Lifeng, YANG Xiangde, FANG Li. Effects of Nitrogen Form and Weak Light Stress on Tea Plant Growth and Metabolism [J]. Journal of Tea Science, 2023, 43(3): 349-355. |
[12] | ZHAN Kun, YANG Zhengli, XU Ziyi, LAI Zhangfeng, LI Jun, CHEN Luojun, ZHOU Sixi, LI Mingxi, GAN Yudi. Comparison of Soluble and Membrane-bound Polyphenol Oxidase from Cultivars Suitable to Ninghong Tea Production [J]. Journal of Tea Science, 2023, 43(3): 356-366. |
[13] | WU Zhenghao, ZHENG Qinqin, HAO Zhenxia, WANG Chen, CHEN Hongping, LU Chengyin. Acid-assisted Improvement of Dispersive Solid Phase Extraction for Rapid Detection of Pesticide Residues in Tea [J]. Journal of Tea Science, 2023, 43(3): 389-398. |
[14] | ZHOU Jihong, CHEN Wei, DING Lejia, WANG Yuefei. Regulatory Effect and Mechanism of EGCG on Metabolic Disorders in High-fructose Diet Mice [J]. Journal of Tea Science, 2023, 43(3): 399-410. |
[15] | ZHANG Zhanyi, ZHANG Baoquan, WANG Zhouli, YANG Yao, FAN Dongmei, HE Weizhong, MA Junhui, LIN Jie. Data Enhancement Optimization and Class Activation Mapping Quantitative Evaluation for CNN Image Recognition of Multiple Tea Categories [J]. Journal of Tea Science, 2023, 43(3): 411-423. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|