Journal of Tea Science ›› 2023, Vol. 43 ›› Issue (5): 593-606.doi: 10.13305/j.cnki.jts.2023.05.010
• Review • Next Articles
LONG Piaopiao, SU Shengxiao, ZHANG Liang*
Received:
2023-06-14
Revised:
2023-08-14
Online:
2023-10-15
Published:
2023-11-06
CLC Number:
LONG Piaopiao, SU Shengxiao, ZHANG Liang. Research Progress on Colored Substances in Tea[J]. Journal of Tea Science, 2023, 43(5): 593-606.
[1] Zhai X T, Zhang L, Granvogl M, et al.Flavor of tea ( [2] 李邦玉, 吴媛, 吴虹燕, 等. 紫外可见光谱法研究EGCG的稳定性[J]. 江苏农业科学, 2015, 43(7): 294-297. Li B Y, Wu Y, Wu H Y, et al.Explore the stability of EGCG using UV-visible spectroscopy[J]. Jiangsu Agricultural Sciences, 2015, 43(7): 294-297. [3] 黄梅丽, 王俊卿. 食品色香味化学[M]. 2版. 北京: 中国轻工业出版社, 2008: 3-4. Huang M L, Wang J Q.Colour, taste and odor chemistry of food, Second edition[M]. 2nd ed. Beijing: China Light Industry Press, 2008: 3-4. [4] Wong D W S. Mechanism and theory in food chemistry[M]. 2nd ed. California: Springer, 2018. [5] Shen J Z, Zou Z W, Zhang X Z, et al.Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant ( -0010-1. [6] Dai Q Y, He Y Y, Ho C T, et al.Effect of interaction of epigallocatechin gallate and flavonols on color alteration of simulative green tea infusion after thermal treatment[J]. Journal of Food Science and Technology, 2017, 54(9): 2919-2928. [7] Kouno M I.Structures of two new oxidation products of green tea polyphenols generated by model tea fermentation[J]. Tetrahedron, 2002, 58(43): 8851-8856. [8] Tanaka T, Inoue K, Betsumiya Y, et al.Two types of oxidative dimerization of the black tea polyphenol theaflavin[J]. Journal of Agricultural and Food Chemistry, 2001, 49(12): 5785-5789. [9] Wan X C, Nursten H E, Cai Y, et al.A new type of tea pigment: from the chemical oxidation of epicatechin gallate and isolated from tea[J]. Journal of the Science of Food and Agriculture, 1997, 74(3): 401-408. [10] Kusano R, Tanaka T, Matsuo Y, et al.Structures of epicatechin gallate trimer and tetramer produced by enzymatic oxidation[J]. Chemical and Pharmaceutical Bulletin (Tokyo), 2008, 55(12): 1768-1772. [11] Matsuo Y, Tanaka T, Kouno I.A new mechanism for oxidation of epigallocatechin and production of benzotropolone pigments[J]. Tetrahedron, 2006, 62(20): 4774-4783. [12] Bailey R G, Nursten H E, Mcdowell I.Comparative study of the reversed-phase high-performance liquid chromatography of black tea liquors with special reference to the thearubigins[J]. Journal of Chromatography A, 1991, 542(1): 115-128. [13] Berkowitz J E, Coggon P, Sanderson G W.Formation of epitheaflavic acid and its transformation to thearubigins during tea fermentation[J]. Phytochemistry, 1971, 10(10): 2271-2278. [14] Hashimoto F, Nonaka G I, Nishioka I.Tannins and related compounds. LXIX. : isolation and structure elucidation of B, B'-linked bisflavanoids, theasinensins D-G and oolongtheanin from oolong tea. (2)[J]. Chempharmbull, 1988, 36(5): 1676-1684. [15] Shii T, Tanaka T, Watarumi S, et al.Polyphenol composition of a functional fermented tea obtained by tea-rolling processing of green tea and loquat leaves[J]. Journal of Agricultural and Food Chemistry, 2011, 59(13): 7253-7260. [16] Matsuo Y, Hayashi T, Saito Y, et al.Structures of enzymatic oxidation products of epigallocatechin[J]. Tetrahedron, 2013, 69(42): 8952-8958. [17] Tanaka T, Watarumi S, Matsuo Y, et al.Production of theasinensins A and D, epigallocatechin gallate dimers of black tea, by oxidation-reduction dismutation of dehydrotheasinensin A[J]. Tetrahedron, 2003, 59(40): 7939-7947. [18] Tanaka T, Matsuo Y, Kouno I.A novel black tea pigment and two new oxidation products of epigallocatechin-3- [19] Uchida K, Ogawa K, Yanase E.Structure determination of novel oxidation products from epicatechin: thearubigin-like molecules[J]. Molecules, 2016, 21(3): 273. doi: 10.3390/molecules21030273. [20] Matsuo Y, Li Y, Watarumi S, et al.Production and degradation mechanism of theacitrin C, a black tea pigment derived from epigallocatechin-3- [21] Itoh N, Katsube Y, Yamamoto K, et al.Laccase-catalyzed conversion of green tea catechins in the presence of gallic acid to epitheaflagallin and epitheaflagallin 3- [22] Sang S, Tian S, Meng X, et al.Theadibenzotropolone, a new type pigment from enzymatic oxidation of (-)-epicatechin and (-)-epigallocatechin gallate and characterized from black tea using LC/MS/MS[J]. Tetrahedron Letters, 2002, 43(40): 7129-7133. [23] Long P, Rakariyatham K, Ho C T, et al.Thearubigins: formation, structure, health benefit and sensory property[J]. Trends in Food Science & Technology, 2023, 133: 37-48. [24] Zhang S, Yang C, Idehen E, et al.Novel theaflavin-type chlorogenic acid derivatives identified in black tea[J]. Journal of Agricultural and Food Chemistry, 2018, 66(13): 3402-3407. [25] 周杰. 高温烘焙(拉老火)工艺对黄大茶化学成分及降糖降脂活性的影响[D]. 合肥: 安徽农业大学, 2019: 37. Zhou J.Effects of high-temperature roasting process on chemical constituents, hypoglycemic and lipid-lowering efficacy of large-leaf yellow tea[D]. Hefei: Anhui Agricultural University, 2019: 37. [26] Degenhardt A, Engelhardt U H, Wendt A S, et al.Isolation of black tea pigments using high-speed countercurrent chromatography and studies on properties of black tea polymers[J]. Journal of Agricultural and Food Chemistry, 2000, 48(11): 5200-5205. [27] Wang J Q, Fu Y Q, Granato D, et al.Study on the color effects of (-)-epigallocatechin-3-gallate under different pH and temperatures in a model beverage system[J]. Food Control, 2022, 139: 109112. doi: 10.1016/j.foodcont.2022.109112. [28] Tanaka T, Mine C, Watarumi S, et al.Accumulation of epigallocatechin quinone dimers during tea fermentation and formation of theasinensins[J]. Journal of Natural Products, 2002, 65(11): 1582-1587. [29] Hua J J, Wang H J, Yuan H B, et al.New insights into the effect of fermentation temperature and duration on catechins conversion and formation of tea pigments and theasinensins in black tea[J]. Journal of the Science of Food and Agriculture, 2022, 102(7): 2750-2760. [30] Kuhnert N.Unraveling the structure of the black tea thearubigins[J]. Archives of Biochemistry and Biophysics, 2010, 501(1): 37-51. [31] Zhu J Y, Wang J J, Yuan H B, et al.Effects of fermentation temperature and time on the color attributes and tea pigments of Yunnan Congou black tea[J]. Foods, 2022, 11(13): 1845. doi: 10.3390/foods11131845. [32] Obanda M, Owuor P O, Mang'oka R. Changes in the chemical and sensory quality parameters of black tea due to variations of fermentation time and temperature[J]. Food Chemistry, 2001, 75(4): 395-404. [33] Cheng L Z, Wang Y F, Zhang J R, et al.Integration of non-targeted metabolomics and E-tongue evaluation reveals the chemical variation and taste characteristics of five typical dark teas[J]. LWT, 2021, 150: 111875. doi: 10.1016/j.lwt.2021.111875. [34] Cui Y Q, Lai G P, Wen M C, et al.Identification of low-molecular-weight color contributors of black tea infusion by metabolomics analysis based on UV-visible spectroscopy and mass spectrometry[J]. Food Chemistry, 2022, 386: 132788. doi: 10.1016/j.foodchem.2022.132788. [35] Shi J, Simal-Gandara J, Mei J F, et al.Insight into the pigmented anthocyanins and the major potential co-pigmented flavonoids in purple-coloured leaf teas[J]. Food Chemistry, 2021, 363: 130278. doi: 10.1016/j.foodchem.2021.130278. [36] Jiang H, Yu F, Qin L, et al.Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea ( [37] Wang Y R, Cui H P, Zhang Q, et al.Proline-glucose Amadori compounds: aqueous preparation, characterization and saltiness enhancement[J]. Food Research International, 2021, 144(3): 110319. doi: 10.1016/j.foodres.2021.110319. [38] Yu X L, Hu S, He C, et al.Chlorophyll metabolism in postharvest tea ( [39] Li J, Hua J J, Zhou Q H, et al.Comprehensive lipidome-wide profiling reveals dynamic changes of tea lipids during manufacturing process of black tea[J]. Journal of Agricultural and Food Chemistry, 2017, 65(46): 10131-10140. [40] Roshanak S, Rahimmalek M, Goli S a H. Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea ( [41] 宛晓春. 茶叶生物化学[M]. 3版. 北京: 茶叶生物化学, 2003: 18. Wan X C.Tea biochemistry[M]. 3rd ed. Beijing: China Agriculture Press, 2003: 18. [42] 罗晓莉, 高彦祥. 茶饮料色泽劣变及护色技术研究进展[J]. 中国食品添加剂, 2022, 33(2): 218-229. Luo X L, Gao Y X.Research progress of color substances, color degradation mechanism and color protection technology for tea beverages[J]. China Food Additives, 2022, 33(2): 218-229. [43] Fan Y G, Zhao X X, Wang H Y, et al.Effects of light intensity on metabolism of light-harvesting pigment and photosynthetic system in [44] Lai Y S, Li S, Tang Q, et al.The dark-purple tea cultivar 'Ziyan' accumulates a large amount of delphinidin-related anthocyanins[J]. Journal of Agricultural and Food Chemistry, 2016, 64(13): 2719-2726. [45] Wang H J, Hua J J, Jiang Y W, et al.Influence of fixation methods on the chestnut-like aroma of green tea and dynamics of key aroma substances[J]. Food Research International, 2020, 136: 109479. doi: 10.1016/j.foodres.2020.109479. [46] 纵榜正. 闷黄通气条件对黄茶感官及滋味化学品质的影响研究[D]. 杭州: 浙江大学, 2020: 56-60. Zong B Z.The effect of ventilating conditions on the sensory quality and taste-chemical quality of yellow tea in the yellowing process[D]: Hangzhou: Zhengjiang University, 2020: 56-60. [47] 丁兆堂, 王秀峰, 于海宁, 等. 茶多酚体外氧化产物颜色稳定性及对PC-3细胞生长的影响[J]. 茶叶科学, 2005, 25(3): 213-218. Ding Z T, Wang X F, Yu H N, et al.Color stability of oxidation products of tea polyphenols and their effects on the growth of PC-3 cells[J]. Journal of Tea Science, 2005, 25(3): 213-218. [48] Cao Q Q, Wang F, Wang J Q, et al.Effects of brewing water on the sensory attributes and physicochemical properties of tea infusions[J]. Food Chemistry, 2021, 364: 130235. doi: 10.1016/j.foodchem.2021.130235. [49] Xu Y Q, Zou C, Gao Y, et al.Effect of the type of brewing water on the chemical composition, sensory quality and antioxidant capacity of Chinese teas[J]. Food Chemistry, 2017, 236: 142-151. [50] Deng S H, Cao Q Q, Zhu Y, et al.Effects of natural spring water on the sensory attributes and physicochemical properties of tea infusions[J]. Food Chemistry, 2023, 419: 136079. doi: 10.1016/j.foodchem.2023.136079. [51] Qin C Y, Lian L, Xu W, et al.Comparison of the chemical composition and antioxidant, anti-inflammatory, [52] Zhang L, Cao Q Q, Granato D, et al.Association between chemistry and taste of tea: a review[J]. Trends in Food Science & Technology, 2020, 101(1): 139-149. [53] 黄藩, 刘飞, 王云, 等. 计算机视觉技术在茶叶领域中的应用现状及展望[J]. 茶叶科学, 2019, 39(1): 81-87. Huang F, Liu F, Wang Y, et al.Research progress and prospect on computer vision technology application in tea production[J]. Journal of Tea Science, 2019, 39(1): 81-87. [54] 汪建, 杜世平. 基于颜色和形状的茶叶计算机识别研究[J]. 茶叶科学, 2008, 28(6): 420-424. Wang J, Du S P.Identification investigation of tea based on HSI color space and figure[J]. Journal of Tea Science, 2008, 28(6): 420-424. [55] 江俞蓉, 刘思彤, 高静, 等. 六安瓜片拉老火“起霜”的形成机制及其对茶叶品质的影响[J]. 茶叶科学, 2018, 38(5): 487-495. Jiang Y R, Liu S T, Gao J, et al.The mechanism of frost-like powder and its effects on Lu'an guapian tea quality[J]. Journal of Tea Science, 2018, 38(5): 487-495. [56] Chen J Y, Yang Y Q, Deng Y L, et al.Aroma quality evaluation of Dianhong black tea infusions by the combination of rapid gas phase electronic nose and multivariate statistical analysis[J]. LWT, 2022, 153: 112496. doi: 10.1016/j.lwt.2021.112496. [57] 戴前颖, 叶颖君, 安琪, 等. 黄大茶感官特征定量描述与风味轮构建[J]. 茶叶科学, 2021, 41(4): 535-544. Dai Q Y, Ye Y J, An Q, et al.Sensory characteristics of yellow large leaf tea by quantitative descriptive analysis and construction of flavor wheel[J]. Journal of Tea Science, 2021, 41(4): 535-544. [58] Li Y C, Ran W, He C, et al.Effects of different tea tree varieties on the color, aroma, and taste of Chinese Enshi green tea[J]. Food Chemistry: X, 2022, 14: 100289. doi: 10.1016/j.fochx.2022.100289. [59] Mao Y L, Wang J Q, Chen G S, et al.Effect of chemical composition of black tea infusion on the color of milky tea[J]. Food Research International, 2020, 139: 109945. doi: 10.1016/j.foodres.2020.109945. [60] Liang Y R, Lu J L, Zhang L Y, et al.Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions[J]. Food Chemistry, 2003, 80(2): 283-290. [61] 高玉萍, 谢前途, 涂云飞, 等. 平阳黄茶适制品种比较研究[J]. 中国茶叶加工, 2023(1): 77-84. Gao Y P, Xie Q T, Tu Y F, et al.Comparative study of different tea varieties’ performance on processing Pingyang yellow tea[J]. China Tea Processing, 2023(1): 77-84. [62] 何丽梅. 白茶色泽及香气的指纹图谱分析[D]. 福州: 福建农林大学, 2014: 68-69. He L M.The fingerprint analysis of white tea color and aroma[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014: 68-69. [63] 潘芝涵. 武夷水仙茶不同加工工艺对品质影响的研究[D]. 昆明: 云南农业大学, 2017: 18-20. Pan Z H.Study on the influence of different processing technology on quality of Wuyi Narcissus tea[D]. Kunming: Yunnan Agricultural University, 2017: 18-20. [64] Zou Y, Ma W J, Tang Q, et al.A high-precision method evaluating color quality of Sichuan dark tea based on colorimeter combined with multi-layer perceptron[J]. Journal of Food Process Engineering, 2020, 43(8): 13444. doi: 10.1111/jfpe.13444. [65] 李玉川, 董晨, 陈玉琼, 等. 优质青砖茶渥堆工艺优化[J]. 食品安全质量检测学报, 2022, 13(14): 4431-4438. Li Y C, Dong C, Chen Y Q, et al.Pile-fermentation conditions optimization of high-quality Qingzhuan tea[J]. Journal of Food Safety and Quality, 2022, 13(14): 4431-4438. |
[1] | WU Zhiyuan, WANG Kaibo, CHEN Silin, ZHAO Bi, SHEN Shiquan. Research Progress on the Mechanism of Natural Tea Components in Alleviating Acne [J]. Journal of Tea Science, 2024, 44(1): 16-26. |
[2] | YANG Yanhu, CHEN Xiaohan, ZHANG Xiaoqing, REN Dajun, ZHANG Shuqin, CHEN Wangsheng. Risk Assessment and Source Analysis of Heavy Metal Pollution in Chinese Tea Gardens in 2000-2022 Based on Meta-analysis [J]. Journal of Tea Science, 2024, 44(1): 37-52. |
[3] | WANG Limin, CHEN Shiping, HUANG Dongfeng. Effects of Foliar Application of Different Concentrations of Organic-based Biostimulant Formulas on Yield and Quality of Tea (Camellia sinensis L.) in Red Soil Regions [J]. Journal of Tea Science, 2024, 44(1): 53-61. |
[4] | HONG Konglin, WU Minghui, GAO Bo, FENG Yening. A Grading Identification Method for Tea Buds Based on Improved YOLOv7-tiny [J]. Journal of Tea Science, 2024, 44(1): 62-74. |
[5] | LI Yatao, ZHOU Yujie, WANG Shaoqing, CHEN Jianneng, HE Leiying, JIA Jiangming, WU Chuanyu. Experimental Study on High-quality Tea Plucking by Robot [J]. Journal of Tea Science, 2024, 44(1): 75-83. |
[6] | WU Zongjie, OU Xiaoxi, LIN Hongzheng, YU Xinru, CHEN Shouyue, WU Qingyang, LI Xinlei, SUN Yun. Study on the Glycosidically Bound Volatiles and Aroma Constituents in the Processing of Wuyi Rougui [J]. Journal of Tea Science, 2024, 44(1): 84-100. |
[7] | ZHANG Huiyuan, MA Kuan, GAO Jing, JIN Yugu, WANG Yujie, SU Zhucheng, NING Jingming, CHEN Hongping, HOU Zhiwei. Analysis of the Major Characteristic Aroma Compounds in Different Grades of Jingshan Tea [J]. Journal of Tea Science, 2024, 44(1): 101-118. |
[8] | ZHAO Xiaoyi, CHEN Aini, JIANG Qing, ZHAO Lei, QIU Tong, FANG Wanxin, LIANG Chuyun, SHARIPOVA Alina, DAI Qianying. Establishment of Lu'an Guapian Green Tea Brewing Control Chart [J]. Journal of Tea Science, 2024, 44(1): 133-148. |
[9] | YUAN Liwen, ZHANG Junbiao, QIN Jiangnan. Study on the Spatiotemporal Evolution and Spatial Differentiation Pattern of Carbon Sink in China’s Tea Industry [J]. Journal of Tea Science, 2024, 44(1): 149-160. |
[10] | MA Jie, YE Chaoyang, MAO Liyu. Research on the Path to Realize the Value of Tea Agricultural Cultural Heritage: Empirical Analysis Based on 31 Typical Cases [J]. Journal of Tea Science, 2024, 44(1): 161-174. |
[11] | WANG Liubin, WU Liyun, WEI Kang, WANG Liyuan. QTL Mapping and Candidate Gene Analysis for Timing of Spring Bud Flush in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2023, 43(6): 747-756. |
[12] | LIU Dongna, GONG Xuejiao, LI Lanying, HUANG Fan, YAO Yu, XU Yaqiong, GAO Yuan, LUO Fan. Analysis of Photosynthetic and Fluorescence Characteristics of Albino Tea Plants [J]. Journal of Tea Science, 2023, 43(6): 757-768. |
[13] | YANG Jun, ZHANG Lilan, ZHANG Wenjing, CHEN Linhai, ZHENG Guohua, LI Yijing, WANG Rangjian. Population Structure and Genetic Differences of Tea Germplasm Resources in Fujian [J]. Journal of Tea Science, 2023, 43(6): 769-783. |
[14] | WU Shuhua, MAO Kaiquan, CHEN Jiaming, LI Jianlong, XUE Jinghua, ZENG Lanting, YANG Yuhua, GU Dachuan. Study on the Influence of Tea Green Leafhopper Infestation on the Tenderness of Fresh Tea Leaves and the Extraction Rate of Metabolites Related to Oolong Tea Quality [J]. Journal of Tea Science, 2023, 43(6): 806-822. |
[15] | LI Yanchun, WANG Yixiang, YE Jing, LI Zhaowei. Changes of Rhizospheric Pathogen Alternaria sp. and Its Antagonistic Bacteria Pseudomonas sp. of Continuous Cropping Tea Plants Mediated by Phenolic Acids [J]. Journal of Tea Science, 2023, 43(6): 823-834. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|