[1] 唐小林, 王家鹏, 范起业. 我国茶业装备数字化现状及路径分析[J]. 中国茶叶加工, 2022, 169(3): 69-72. Tang X L, Wang J P, Fan Q Y.Current situation and path analysis of digitalization of the tea industry equipment in China[J]. China Tea Processing, 2022, 169(3): 69-72. [2] 金晶. 浙江省茶产业数字化改革进程与展望[J]. 中国茶叶加工, 2022, 169(3): 6-10, 33. Jin J.Progress and prospect of the tea industry digital reform in Zhejiang[J]. China Tea Processing, 2022, 169(3): 6-10, 33. [3] 许云召. 计算机图像处理技术在茶叶感官品质检测中的应用研究[J]. 福建茶叶, 2022, 44(8): 13-15. Xu Y Z.Research on the application of computer image processing technology in sensory quality detection of tea[J]. Tea in Fujian, 2022, 44(8): 13-15. [4] 陈晶, 朱启兵, 黄敏, 等. 基于机器视觉的茶小绿叶蝉识别方法研究[J]. 激光与光电子学进展, 2018, 55(1): 348-355. Chen J, Zhu Q B, Huang M, et al.Recognition of Empoasca flavescens based on machine vision[J]. Laser & Optoelectronics Progress, 2018, 55(1): 348-355. [5] 封洪强, 姚青. 农业害虫自动识别与监测技术[J]. 植物保护, 2018, 44(5): 127-133. Feng H Q, Yao Q.Automatic identification and monitoring technologies of agricultural pest insects[J]. Plant Protection, 2018, 44(5): 127-133. [6] 黄藩, 刘飞, 王云, 等. 计算机视觉技术在茶叶领域中的应用现状及展望[J]. 茶叶科学, 2019, 39(1): 81-87. Huang F, Liu F, Wang Y, et al.Research progress and prospect on computer vision technology application in tea production[J]. Journal of Tea Science, 2019, 39(1): 81-87. [7] 李素朵. 计算机视觉技术在茶叶等级检测中的应用研究[J]. 农机化研究, 2019, 41(5): 219-222. Li S D.Application of computer vision in tea grade testing[J]. Journal of Agricultural Mechanization Research, 2019, 41(5): 219-222. [8] 刘鹏, 吴瑞梅, 杨普香, 等. 基于计算机视觉技术的茶叶品质随机森林感官评价方法研究[J]. 光谱学与光谱分析, 2019, 39(1): 193-198. Liu P, Wu R M, Yang P X, et al.Study of sensory quality evaluation of tea using computer vision technology and forest random method[J]. Spectroscopy And Spectral Analysis, 2019, 39(1): 193-198. [9] Redmon J, Divvala S, Girshick R, et al.You only look once: unified, real-time object detection[C]//IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788. [10] Lei F, Tang F, Li S.Underwater target detection algorithm based on improved YOLOv5[J]. Journal of Marine Science and Engineering, 2022, 10(3): 310. doi: 10.3390/jmse10030310. [11] 毋立芳, 汪敏贵, 付亨, 等. 深度目标检测与图像分类相结合的棉花发育期自动识别方法[J]. 中国科技论文, 2018, 13(20): 2309-2316. Wu L F, Wang M G, Fu H, et al.Automatic recognition of cotton growth by combining deep learning based object recognition and image classification[J]. China Sciencepaper, 2018, 13(20): 2309-2316. [12] 徐佳鹏, 张朝晖, 李智, 等. 基于YOLO模型的小麦外观分类算法研究[J]. 自动化仪表, 2023, 44(3): 83-87. Xu J P, Zhang Z H, Li Z, et al.Research on wheat appearance classification algorithm based on YOLO model[J]. Process Automation Instrumentation, 2023, 44(3): 83-87. [13] 尹川, 苏议辉, 潘勉, 等. 基于改进YOLOv5s的名优绿茶品质检测算法[J]. 农业工程学报, 2023, 39(8): 179-187. Yin C, Su Y H, Pan M, et al.Detection of the quality of famous green tea based on improved YOLOv5s[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(8): 179-187. [14] 王根, 江晓明, 黄峰, 等. 基于改进YOLOv3网络模型的茶草位置检测算法[J]. 中国农机化学报, 2023, 44(3): 199-207. Wang G, Jiang X M, Huang F, et al.An algorithm for localizing tea bushes and green weeds based on improved YOLOv3 network model[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 199-207. [15] 孙肖肖, 牟少敏, 许永玉, 等. 基于深度学习的复杂背景下茶叶嫩芽检测算法[J]. 河北大学学报(自然科学版), 2019, 39(2): 211-216. Sun X X, Mou S M, Xu Y Y, et al.Detection algorithm of tea tender buds under complex background based on deep learning[J]. Journal of Hebei University (Natural Science Edition), 2019, 39(2): 211-216. |