[1] 梅宇, 梁晓. 2021年中国茶叶生产与内销形势分析[J]. 中国茶叶, 2022, 44(4): 17-22. Mei Y,Liang X.Analysis of China's tea production and domestic sales in 2021[J]. China Tea, 2022, 44(4): 17-22. [2] 代云中, 蒋天宸, 杨威, 等. 基于YOLOv5算法的名优茶采摘机器人[J]. 南方农机, 2023, 54(12): 24-27. Dai Y Z, Jiang T C, Yang W, et al.A premium tea picking robot based on the YOLOv5 algorithm[J]. China Southern Agricultural Machinery, 2023, 54(12): 24-27. [3] 黄海涛, 毛宇骁, 李红莉, 等. 茶鲜叶机械化采收装备与技术研究进展[J]. 中国茶叶, 2023, 45(8): 18-23, 31. Huang H T, Mao X Y, Li H L, et al.Research progress on mechanized harvesting equipment and technology for fresh tea leaves[J]. Chinese Tea, 2023, 45(8): 18-23, 31. [4] 吴敏, 郇晓龙, 陈建能, 等. 融合2D激光雷达与航向姿态参考系统的采茶机仿形方法研究与试验[J]. 茶叶科学, 2023, 43(1): 135-145. Wu M, Huan X L, Chen J N, et al.Research and experiment on profiling method of tea picker based on fusion of 2D-LiDAR and attitude and heading reference system[J]. Journal of Tea Science, 2023, 43(1): 135-145. [5] 王先伟, 吴明晖, 周俊, 等. 名优茶采摘机器人机械手结构参数优化与仿真[J]. 中国农机化学报, 2018, 39(7): 84-89. Wang X W, Wu M H, Zhou J, et al.Optimization and simulation of structural parameters of manipulators for high-quality tea picking robots[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(7): 84-89. [6] 吴雪梅, 张富贵, 吕敬堂. 基于图像颜色信息的茶叶嫩叶识别方法研究[J]. 茶叶科学, 2013, 33(6): 584-589. Wu X M, Zhang F G, Lü J T.Research on the recognition method of tea leaves based on image color information[J]. Journal of Tea Science, 2013, 33(6): 584-589. [7] 龙樟, 姜倩, 王健, 等. 茶叶嫩芽视觉识别与采摘点定位方法研究[J]. 传感器与微系统, 2022, 41(2): 39-41, 45. Long Z, Jiang Q, Wang J, et al.Research on method of tea flushes vision recognition and picking point localization[J]. Transducer and Microsystem Technologies, 2022, 41(2): 39-41, 45. [8] 张金炎, 曹成茂, 李文宝, 等. 基于多特征融合的茶叶鲜叶等级识别的方法研究[J]. 安徽农业大学学报, 2021, 48(3): 480-487. Zhang J Y, Cao C M, Li W B, et al.Study on the method of recognition of fresh leaf grade of tea based on multi-feature fusion[J]. Journal of Anhui Agricultural University, 2021, 48(3): 480-487. [9] 刘自强, 周铁军, 傅冬和, 等. 基于颜色和形状的鲜茶叶图像特征提取及在茶树品种识别中的应用[J]. 江苏农业科学, 2021, 49(12): 168-172. Liu Z Q, Zhou T J, Fu D H, et al.Application of image feature extraction based on color and shape in tea tree variety identification[J]. Jiangsu Agricultural Sciences, 2021, 49(12): 168-172. [10] 王子钰, 赵怡巍, 刘振宇. 基于SSD算法的茶叶嫩芽检测研究[J]. 微处理机, 2020, 41(4): 42-48. Wang Z Y, Zhao Y W, Liu Z Y.Research on tea buds detection based on SSD algorithm[J]. Microprocessors, 2020, 41(4): 42-48. [11] Yang H L, Chen L, Chen M T, et al.Tender tea shoots recognition and positioning for picking robot using improved YOLO-v3 model[J]. IEEE Access, 2019: 180998-181011. [12] 方梦瑞, 吕军, 阮建云, 等. 基于改进YOLOv4-tiny的茶叶嫩芽检测模型[J]. 茶叶科学, 2022, 42(4): 549-560. Fang M R, Lü J, Ruan J Y, et al.Tea buds detection model using improved YOLOv4-tiny[J]. Journal of Tea Science, 2022, 42(4): 549-560. [13] 吕丹瑜, 金子晶, 陆璐, 等. 基于图像处理技术的茶树新梢识别和叶面积计算的探索研究[J]. 茶叶科学, 2023, 43(5): 691-702. Lü D Y, Jin Z J, Lu L, et al.Exploratory study on the image processing technology-based tea shoot identification and leaf area calculation[J]. Journal of Tea Science, 2023, 43(5): 691-702. [14] 尹川, 苏议辉, 潘勉, 等. 基于改进YOLOv5s的名优绿茶品质检测[J]. 农业工程学报, 2023, 39(8): 179-187. Yin C, Su Y H, Pan M, et al.Detection of the quality of famous green tea based on improved YOLOv5s[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(8): 179-187. [15] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//The Institute of Electrical and Electronics Engineers. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver: IEEE, 2023. [16] He K M, Zhang X Y, Ren S Q, et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2014, 37(9): 1904-1916. [17] Redmon J, Farhadi A.YOLOv3: an incremental improvement[J]. arXiv, 2018: 1804.02767. doi: 10.48550/arXiv.1804.02767. [18] 祝志慧, 何昱廷, 李沃霖, 等. 基于改进YOLOv7模型的复杂环境下鸭蛋识别定位[J]. 农业工程学报, 2023, 39(11): 274-285. Zhu Z H, He Y T, Li W L, et al.Improved YOLOv7 model for duck egg recognition and localization in complex environments[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 39(11): 274-285. [19] Woo S, Park J, Lee J Y, et al.CBAM: convolutional block attention module[C]//Ferrari V, Hebert M, Sminchisescu C, et al. Computer Vision: ECCV 2018. Munich: Springer, 2018. [20] Wang J W, Xu C, Yang W, et al.A normalized gaussian wasserstein distance for tiny object detection[J]. arXiv, 2021: 2110.13389. doi: 10.48550/arXiv.2110.13389. [21] Zheng Z H, Wang P, Liu W, et al.Distance-IoU loss: faster and better learning for bounding box regression[J]. arXiv, 2019: 1911.08287. doi: 10.48550/arXiv.1911.08287. [22] Rezatofighi H, Tsoi N, Gwak J Y, et al.Generalized intersection over union: a metric and a loss for bounding box regression[C]//The Institute of Electrical and Electronics Engineers. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019. [23] He J B, Erfani S, Ma X J, et al.Alpha-IoU: a family of power intersection over union losses for bounding box regression[J]. arXiv, 2021: 2110.13675. doi: 10.48550/arXiv.2110.13675. [24] Ma S L, Xu Y.MPDIoU: a loss for efficient and accurate bounding box regression[J]. arXiv, 2023: 2307.07662. doi: 10.48550/arXiv.2307.07662. [25] Liu W, Anguelov D, Erhan D, et al.SSD: single shot multibox detector[C]//Leibe B, Matas J, Sebe N, et al. Computer Vision: ECCV 2016. Munich: Springer, 2016. [26] Ren S Q, He K M, Girshick R, et al.Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1137-1149. [27] Malta A, Mendes M, Farinha T.Augmented reality maintenance assistant using YOLOv5[J]. Applied Sciences, 2021, 11(11): 4758. doi: 10.3390/app11114758. |