Journal of Tea Science ›› 2024, Vol. 44 ›› Issue (1): 119-132.doi: 10.13305/j.cnki.jts.2024.01.008
• Research Paper • Previous Articles Next Articles
WAN Liwei, ZENG Hongzhe, PENG Liyuan, WEN Shuai, LIU Changwei, BAO Sudu, AN Qin, HUANG Jian'an*, LIU Zhonghua*
Received:
2023-10-11
Revised:
2023-11-11
Online:
2024-02-25
Published:
2024-03-13
CLC Number:
WAN Liwei, ZENG Hongzhe, PENG Liyuan, WEN Shuai, LIU Changwei, BAO Sudu, AN Qin, HUANG Jian'an, LIU Zhonghua. Inductive Effect and Mechanism of EGCG on Beiging of White Adipose Tissue in High-fat Diet-fed GK Rats[J]. Journal of Tea Science, 2024, 44(1): 119-132.
[1] Camp H S, Ren D, Leff T.Adipogenesis and fat-cell function in obesity and diabetes[J]. Trends in Molecular Medicine, 2002, 8(9): 442-447. [2] Sakers A, De Siqueira M K, Seale P, et al. Adipose-tissue plasticity in health and disease[J]. Cell, 2022, 185(3): 419-446. [3] Lee Y H, Mottillo E P, Granneman J G.Adipose tissue plasticity from WAT to BAT and in between[J]. Biochimica et Biophysica Acta, 2014, 1842(3): 358-369. [4] Ma Y R, Shen S Y, Yan Y, et al.Adipocyte thyroid hormone [5] Yang N F, Wang Y X, Tian Q, et al.Blockage of PPARγ T166 phosphorylation enhances the inducibility of beige adipocytes and improves metabolic dysfunctions[J]. Cell Death & Differentiation, 2023, 30(3): 766-778. [6] Wang Q, Li H X, Tajima K, et al.Post-translational control of beige fat biogenesis by PRDM16 stabilization[J]. Nature, 2022, 609(7925): 151-158. [7] Jia M, Xu T C, Xu Y J, et al.Dietary fatty acids activate or deactivate brown and beige fat[J]. Life Sciences, 2023, 330: 121978. doi: 10.1016/j.lfs.2023.121978. [8] Cui C J, Jin J L, Guo L N, et al.Beneficial impact of epigallocatechingallate on LDL-C through PCSK9/LDLR pathway by blocking HNF1α and activating FoxO3a[J]. Journal of Translational Medicine, 2020, 18(1): 195. doi: 10.1186/s12967-020-02362-4. [9] Lambert J D, Sang S M, Yang C S.Biotransformation of green tea polyphenols and the biological activities of those metabolites[J]. Molecular Pharmaceutics, 2007, 4(6): 819-825. doi: 10.1021/mp700075m. [10] Lee M S, Kim Y.(-)-Epigallocatechin-3-gallate enhances uncoupling protein 2 gene expression in 3T3-L1 adipocytes[J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(2): 434-436. [11] Lee M S, Shin Y, Jung S, et al.Effects of epigallocatechin-3-gallate on thermogenesis and mitochondrial biogenesis in brown adipose tissues of diet-induced obese mice[J]. Food & Nutrition Research, 2017, 61(1) : 1325307. doi: 10.1080/16546628.2017.1325307. [12] Mi Y, Liu X, Tian H, et al.EGCG stimulates the recruitment of brite adipocytes, suppresses adipogenesis and counteracts TNF-α-triggered insulin resistance in adipocytes[J]. Food & Function, 2018, 9(6): 3374-3386. [13] Nahmgoong H, Jeon Y G, Park E S, et al.Distinct properties of adipose stem cell subpopulations determine fat depot-specific characteristics[J]. Cell Metabolism, 2022, 34(3): 458-472. [14] Li F, Gao C, Yan P, et al.EGCG reduces obesity and white adipose tissue gain partly through AMPK activation in mice[J]. Front Pharmacol, 2018, 9: 1366. doi: 10.3389/fphar.2018.01366. [15] Argoud K, Wilder S P, Mcateer M A, et al.Genetic control of plasma lipid levels in a cross derived from normoglycaemic Brown Norway and spontaneously diabetic Goto-Kakizaki rats[J]. Diabetologia, 2006, 49(11): 2679-2688. [16] Szkudelska K, Okulicz M, Hertig I, et al.Resveratrol ameliorates inflammatory and oxidative stress in type 2 diabetic Goto-Kakizaki rats[J]. Biomedicine & Pharmacotherapy, 2020, 125: 110026. doi: 10.1016/j.biopha.2020.110026. [17] Brunham L R.HDL as a causal factor in atherosclerosis: insights from human genetics[J]. Current Atherosclerosis Reports, 2016, 18(12): 71. doi: 10.1007/s11883-016-0623-0. [18] Matafome P, Louro T, Rodrigues L, et al.Metformin and atorvastatin combination further protect the liver in type 2 diabetes with hyperlipidaemia[J]. Diabetes Metabolism Research and Reviews, 2011, 27(1): 54-62. [19] Kiya M, Tamura Y, Takeno K, et al.Adipose insulin resistance and decreased adiponectin are correlated with metabolic abnormalities in nonobese men[J]. The Journal of Clinical Endocrinology & Metabolism, 2021, 106(5): e2228-e2238. [20] Yang C S, Hong J.Prevention of chronic diseases by tea: possible mechanisms and human relevance[J]. Annual Review of Nutrition, 2013, 33: 161-81. [21] Nair A B, Jacob S.A simple practice guide for dose conversion between animals and human[J]. Journal of Basic and Clinical Pharmacy, 2016, 7(2): 27-31. [22] Grove K A, Sae-Tan S, Kennett M J, et al.(-)-Epigallocatechin-3-gallate inhibits pancreatic lipase and reduces body weight gain in high fat-fed obese mice[J]. Obesity, 2012, 20(11): 2311-2313. [23] Uchiyama Y, Suzuki T, Mochizuki K, et al.Dietary supplementation with (-)-epigallocatechin-3-gallate reduces inflammatory response in adipose tissue of non-obese type 2 diabetic Goto-Kakizaki (GK) rats[J]. Journal of Agricultural and Food Chemistry, 2013, 61(47): 11410-11417. [24] Jeon Y G, Kim Y Y, Lee G, et al.Physiological and pathological roles of lipogenesis[J]. Nature Metabolism, 2023, 5(5): 735-759. [25] Wang B, Du M.Increasing adipocyte number and reducing adipocyte size: the role of retinoids in adipose tissue development and metabolism[J]. Critical Reviews in Food Science and Nutrition, 2023: 1-18. doi: 10.1080/10408398.2023.2227258. [26] Inagaki T, Sakai J, Kajimura S.Transcriptional and epigenetic control of brown and beige adipose cell fate and function[J]. Nature Reviews Molecular Cell Biology, 2016, 17(8): 480-495. [27] Keinan O, Valentine J M, Xiao H, et al.Glycogen metabolism links glucose homeostasis to thermogenesis in adipocytes[J]. Nature, 2021, 599(7884): 296-301. [28] Kajimura S, Spiegelman B M, Seale P.Brown and beige fat: physiological roles beyond heat generation[J]. Cell Metabolism, 2015, 22(4): 546-559. [29] Ikeda K, Kang Q, Yoneshiro T, et al.UCP1-independent signaling involving SERCA2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis[J]. Nature Medicine, 2017, 23(12): 1454-1465. [30] Hong F, Pan S J, Guo Y, et al.PPARs as nuclear receptors for nutrient and energy metabolism[J]. Molecules, 2019, 24(14): 2545. doi: 10.3390/molecules24142545. [31] Göransson O, Kopietz F, Rider M H.Metabolic control by AMPK in white adipose tissue[J]. Trends in Endocrinology & Metabolism, 2023, 34(11): 704-717. [32] Wu L Y, Zhang L N, Li B H, et al.AMP-activated protein kinase (AMPK) regulates energy metabolism through modulating thermogenesis in adipose tissue[J]. Frontiers in Physiology, 2018, 9: 122. doi: 10.3389/fphys.2018.00122. [33] Srinivasan K, Ramarao P.Animal models in type 2 diabetes research: an overview[J]. Indian Journal of Medical Research, 2007, 125(3): 451-472. [34] Hou J, Li Z, Zhong W, et al.Temporal transcriptomic and proteomic landscapes of deteriorating pancreatic islets in type 2 diabetic rats[J]. Diabetes, 2017, 66(8): 2188-2200. [35] 雷蕾, 林智立, 王琳琳, 等. 2型糖尿病发病过程中胰岛炎症的动力学机理[J]. 科学通报, 2020, 65(35): 4139-4148. Lei L, Lin Z L, Wang L L, et al.The dynamics mechanism of islet inflammation during type 2 diabetes progress[J]. Chinese Science Bulletin, 2020, 65: 4139-4148. [36] Cai E P, Lin J K.Epigallocatechin gallate (EGCG) and rutin suppress the glucotoxicity through activating IRS2 and AMPK signaling in rat pancreatic [37] Ortsäter H, Grankvist N, Wolfram S, et al.Diet supplementation with green tea extract epigallocatechin gallate prevents progression to glucose intolerance in [38] Kobayashi N, Ueki K, Okazaki Y, et al.Blockade of class IB phosphoinositide-3 kinase ameliorates obesity-induced inflammation and insulin resistance[J]. PNAS, 2011, 108(14): 5753-5758. [39] Araiz C, Yan A, Bettedi L, et al.Enhanced β-adrenergic signalling underlies an age-dependent beneficial metabolic effect of PI3K p110α inactivation in adipose tissue[J]. Nature Communications, 2019, 10(1): 1546. doi: 10.1038/s41467-019-09514-1. [40] Hwang I, Kim J B.Two faces of white adipose tissue with heterogeneous adipogenic progenitors[J]. Diabetes & Metabolism Journal, 2019, 43(6): 752-762. [41] Tian X, Xie G, Xiao H, et al.CXCR4 knockdown prevents inflammatory cytokine expression in macrophages by suppressing activation of MAPK and NF-κB signaling pathways[J]. Cell & Bioscience, 2019, 9: 55. doi: 10.1186/s13578-019-0315-x. [42] Okla M, Kim J, Koehler K, et al.Dietary factors promoting brown and beige fat development and thermogenesis[J]. Advances in Nutrition, 2017, 8(3): 473-483. [43] Wang W S, Seale P.Control of brown and beige fat development[J]. Nature Reviews Molecular Cell Biology, 2016, 17(11): 691-702. [44] Finlin B S, Memetimin H, Confides A L, et al.Human adipose beiging in response to cold and mirabegron[J]. JCI Insight, 2018, 3(15): e121510. doi: 10.1172/jci.insight.121510. [45] Whittle A J, Jiang M, Peirce V, et al.Soluble LR11/SorLA represses thermogenesis in adipose tissue and correlates with BMI in humans[J]. Nature Communications, 2015, 6: 8951. doi: 10.1038/ncomms9951. [46] Laeger T, Baumeier C, Wilhelmi I, et al.FGF21 improves glucose homeostasis in an obese diabetes-prone mouse model independent of body fat changes[J]. Diabetologia, 2017, 60(11): 2274-2284. [47] Zhang Y, Xie C, Wang H, et al.Irisin exerts dual effects on browning and adipogenesis of human white adipocytes[J]. American Journal of Physiology-Endocrinology and Metabolism, 2016, 311(2): E530-E541. doi: 10.1152/ajpendo.00094.2016. |
[1] | PENG Liyuan, ZENG Hongzhe, WAN Liwei, WEN Shuai, LIU Changwei, AN Qin, BAO Sudu, HUANG Jian'an, LIU Zhonghua. The Investigation of the Ameliorate Effect and Mechanism of EGCG on Non-obese GK Rat with Diabetic Kidney Damage [J]. Journal of Tea Science, 2023, 43(6): 784-794. |
[2] | SHENG Zheng, DU Wenkai, WANG Chongchong, ZHANG Boan, ZHANG Haihua, DU Qizhen. Effect of Tea Polyphenols on the Determination of Reducing Sugar in Tea Food [J]. Journal of Tea Science, 2023, 43(4): 567-575. |
[3] | CHEN Ke, WANG Yuanzhu, YANG Xiaoying, ZHANG Dongying, ZHU Qiangqiang. Preparation of Nanoparticules with Chitosan Complexed β-lactoglobulin Loaded EGCG and their Effects on Blood Glucose in Diabetic Mice [J]. Journal of Tea Science, 2022, 42(5): 731-739. |
[4] | YU Rongxin, ZHENG Qinqin, CHEN Hongping, ZHANG Jinsong, ZHANG Xiangchun. Recent Advances in Catechin Biomedical Nanomaterials [J]. Journal of Tea Science, 2022, 42(4): 447-462. |
[5] | ZHANG Yini, JI Zheng. Econometric Analyses of EGCG Research Literature [J]. Journal of Tea Science, 2022, 42(3): 423-434. |
[6] | CHEN Chunxiao, LOU Wenyu, DING Zhenjian, LI Zhuoye, YANG Yuanyuan, JIN Peng, DU Qizhen. Vardenafil Improves the Proliferative Inhibition of EGCG-β-lactoglobulin Nanoparticles Against Liver Cancer Cells [J]. Journal of Tea Science, 2020, 40(4): 528-535. |
[7] | XU Yan, CAI Xiaqiang, XIE Qianjin, TAI Lingling, LIU Zenghui. The Intergative Effects of Epigallocatechin-3-gallate and Vitamin C on Serum Uric Acid Levels in Hyperuricemic Mice [J]. Journal of Tea Science, 2020, 40(3): 407-414. |
[8] | ZHANG Jianyong, CHEN Lin, CUI Hongchun, WANG Weiwei, XUE Jinjin, XIONG Chunhua, JIANG Heyuan. Optimization of Technical Parameters for Chemical Synthesis of Theasinensin A by PBD and RSM [J]. Journal of Tea Science, 2020, 40(1): 51-62. |
[9] | FANG Hongfeng, ZHANG Huixia, WANG Guohong, YANG Minhe. Fungal Mixed Fermentation for The Production of Lipase and Its Activity Analysis in Galloylated Catechin Hydrolysis [J]. Journal of Tea Science, 2019, 39(1): 88-97. |
[10] | SUN Lili, ZENG Xiangquan, Nilesh W Gaikwad, WANG Huan, XU Hairong, YE Jianhui. Determination of Green Tea Catechin Biomarkers and It′s Relative Application [J]. Journal of Tea Science, 2017, 37(5): 429-441. |
[11] | HUANG Xiangxiang, YANG Zhe, YU Lijun. Research Progress of Green Tea and EGCG for the Prevention and Mitigation of Chronic Obstructive Pulmonary Disease Caused by Cigarette Smoke [J]. Journal of Tea Science, 2017, 37(4): 332-338. |
[12] | ZHANG Jing, HUANG Jian'an, CAI Shuxian, YI Xiaoqin, LIU Jianjun, WANG Yingzi, TIAN Lili, LIU Zhonghua. Theaflavins and EGCG Protect SH-SY5Y Cells from Oxidative Damage Induced by Amyloid-β 1-42 and Inhibit the Level of Aβ42 in vivo and in vitro [J]. Journal of Tea Science, 2016, 36(6): 655-662. |
[13] | LIU Min, RAO Guowu, HUA Yunfen. Research Advance in Synthesis and Pharmacological Effects of EGCG Derivatives [J]. Journal of Tea Science, 2016, 36(2): 119-130. |
[14] | LIU Hongguo. The Investigation of the Protection Effects and Mechanism of EGCG on Kidney Ischemia Reperfusion Injury [J]. Journal of Tea Science, 2016, 36(2): 169-174. |
[15] | YE Xiaofeng, ZHANG Fang, ZHU Junli, ZHANG Lei, XIE Dumei. Inhibition of Biofilm Development and Spoilage Potential in Shewanella baltica by Epigallocatechin Gallate [J]. Journal of Tea Science, 2016, 36(2): 201-209. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|