Journal of Tea Science ›› 2024, Vol. 44 ›› Issue (2): 219-230.doi: 10.13305/j.cnki.jts.2024.02.010
• Research Paper • Previous Articles Next Articles
SONG Bo1,3, JIA Peining1,3, YE Wenqi1,3, WU Jun1,3, SUN Weijiang1,3,*, XUE Zhihui2,3,*
Received:
2023-08-22
Revised:
2023-11-26
Online:
2024-04-15
Published:
2024-04-30
CLC Number:
SONG Bo, JIA Peining, YE Wenqi, WU Jun, SUN Weijiang, XUE Zhihui. Physiological Differences and Expression Analysis of Wax Synthesis Related Gene WSD1 in Tea Roots Treated with Fluorine[J]. Journal of Tea Science, 2024, 44(2): 219-230.
[1] Shu W S, Zhang Z Q, Lan C Y, et al.Fluoride and aluminium concentrations of tea plants and tea products from Sichuan Province, PR China[J]. Chemosphere, 2003, 52(9): 1475-1482. [1] 邢安琪, 武子辰, 徐晓寒, 等. 茶树富集氟的特点及其机制的研究进展[J]. 茶叶科学, 2022, 42(3): 301-315. Xing A Q, Wu Z C, Xu X H, et al.Research advances of fluoride accumulation mechanisms in tea plants ( [2] 刘艳丽, 金孝芳, 曹丹, 等. 茶树铝、氟富集研究进展[J]. 植物科学学报, 2016, 34(6): 972-977. Liu Y L, Jin X F, Cao D, et al.Current progress in aluminum and fluoride accumulation in the tea plant[J]. Plant Science Journal, 2016, 34(6): 972-977. [3] Zhang W H, Cai Y, Tu C, et al.Arsenic speciation and distribution in an arsenic hyperaccumulating plant[J]. The Science of the Total Environment, 2002, 300(1/2/3): 167-177. [4] Salt D E, Blaylock M, Kumar N P, et al.Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants[J]. Biotechnology, 1995, 13(5): 468-474. [5] 王琼琼. 茶树稀土和氟铝元素积累特性及基因型差异研究[D]. 福州: 福建农林大学, 2015. Wang Q Q.Study on accumulation characteristics and genotypic differences of rare earth and aluminum fluoride in tea plants [D]. Fuzhou: Fujian Agriculture and Forestry University, 2015. [6] 贾培凝. 氟高低富集茶树响应氟处理的生理差异及转录组分析[D]. 福州: 福建农林大学, 2021. Jia P N.Physiological differences and transcriptome analysis of tea plants enriched with high and low fluoride in response to fluoride treatment [D]. Fuzhou: Fujian Agriculture and Forestry University, 2021. [7] 李春雷. 氟对茶树幼苗生理生化的影响及其作用机制研究[D]. 武汉: 华中农业大学, 2011. Li C L.Study on the effect and mechanism of fluoride in the physiology and biochemistry of tea seedings [D]. Wuhan: Huazhong Agricultural University, 2011. [8] Zhang L, Li Q, Ma L F, et al.Characterization of fluoride uptake by roots of tea plants ( [9] 向勤锃, 刘德华. 氟对人体的作用及茶树富氟的研究进展与展望[J]. 茶叶通讯, 2002(2): 34-37. Xiang Q Z, Liu D H.Progress and prospect of fluorine on human body and research of fluorine rich in tea tree[J]. Journal of Tea Communication, 2002(2): 34-37. [10] 唐茜, 赵先明, 杜晓, 等. 氟对茶树生长, 叶片生理生化指标与茶叶品质的影响[J]. 植物营养与肥料学报, 2011, 17(1): 186-194. Tang Q, Zhao X M, Du X, et al.Effects of fluorine stress on growth, physiological-biochemical characteristics and quality of tea leaves[J]. Journal of Plant Nutrition and Fertilizer, 2011, 17(1): 186-194. [11] 杨晓, 张月华, 余志, 等. 氟对茶树生理的影响及茶树耐氟机制研究进展[J]. 华中农业大学学报, 2015, 34(3): 142-146. Yang X, Zhang Y H, Yu Z, et al.Physiological effects of fluoride on tea plant and fluoride-resistant mechanism of tea[J]. Journal of Huazhong Agricultural University, 2015, 34(3): 142-146. [12] Li C L, Ni D J.Effect of fluoride on chemical constituents of tea leaves[J]. Fluoride, 2009, 42(3): 237-243. [13] 方兴汉, 吴采. 茶树某些矿质元素缺乏症和过量症的研究[J]. 中国茶叶, 1984, 6(2): 19-21, 41. Fang X H, Wu C.Study of certain mineral deficiency and excess elements in tea trees[J]. China Tea, 1984, 6(2): 19-21, 41. [14] 彭传燚. 茶树氟富集规律、亚细胞分布及在叶片表面存在形态的研究[D]. 合肥: 安徽农业大学, 2011. Peng C Y.Study on fluoride accumulation, subcellular distribution of tea plant and its chemical form in leaf surface [D]. Hefei: Anhui Agricultural University, 2011. [15] Li C, Zheng Y, Zhou J, et al.Changes of leaf antioxidant system, photosynthesis and ultrastructure in tea plant under the stress of fluorine[J]. Biologia Plantarum, 2011, 55(3): 563-566. [16] 杨贤鹏, 王宙雅, 高翔, 等. 植物表皮蜡质生物合成及调控[J]. 中国生物工程杂志, 2016, 36(9): 75-80. Yang X P, Wang Z Y, Gao X, et al.Research progress in plant cuticular wax biosynthesize and regulation[J]. Journal of Chinese Biotechnology, 2016, 36(9): 75-80. [17] Kim M S, Shim K B, Park S H, et al.Changes in cuticular waxes of developing leaves in sesame ( [18] Kunst L, Samuels L.Plant cuticles shine: advances in wax biosynthesis and export[J]. Current Opinion in Plant Biology, 2009, 12(6): 721-727. [19] Li F L, Wu X M, Lam P, et al.Identification of the wax ester synthase/acyl-coenzyme A: diacylglycerol acyltransferase [20] Rowland O, Zheng H Q, Hepworth S R, et al. [21] 王丽霞. 茶树对氟的富集及其生理响应机制研究[D]. 杨凌: 西北农林科技大学, 2014. Wang L X.Study on the enrichment of fluoride in tea plant and its physiological response mechanism [D]. Yangling: Northwest A&F University, 2014. [22] 郭素枝. 扫描电镜技术及其应用[M]. 厦门: 厦门大学出版社, 2006. Guo S Z.Scanning electron microscopy and its application [M]. Xiamen: Xiamen University Press, 2006. [23] Chen C J, Chen H, Zhang Y, et al.TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. [24] 吴代赦, 吴铁, 董瑞斌, 等. 植物对土壤中氟吸收、富集的研究进展[J]. 南昌大学学报(工科版), 2008(2): 103-111. Wu D S, Wu T, Dong R B, et al.Advances in absorption and enrichment of soil fluoride by plants[J]. Journal of Nanchang University (Engineering & Technology), 2008(2): 103-111. [25] Mao B G, Cheng Z J, Lei C L, et al.Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax[J]. Planta, 2011, 235(1): 39-52. [26] 李春雷. 氟对茶树幼苗生理生化的影响及其作用机制研究[D]. 武汉: 华中农业大学, 2011. Li C L.Effects of fluoride on physiology and biochemistry of tea seedlings and its mechanism [D]. Wuhan: Huazhong Agricultural University, 2011. [27] 张进献, 李冬杰, 李宏杰. 果实软化过程中细胞壁结构和组分及细胞壁酶的变化[J]. 河北林果研究, 2007, 22(2): 180-182. Zhang J X, Li D J, Li H J.Changes of cell wall structure, composition and hydrolytic enzymes in fruit softening process[J]. Forestry and Ecological Sciences, 2007, 22(2): 180-182. [28] 许疆维, 王彦芹. 花花柴蜡质合成相关基因的克隆及分析[J]. 基因组学与应用生物学, 2021, 40(s3): 3199-3208. Xu J W, Wang Y Q.Cloning and analysis of genes related to waxy synthesis in [29] 悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展[J]. 生物技术通报, 2022, 38(12): 11-26. Yue M F, Zhang C, Wu Z Y.Advances in structure and function of plant transcription factor AP2/ERF family proteins[J]. Biotechnology Bulletin, 2022, 38(12): 11-26. [30] Lü B S, Wei K J, Hu K Q, et al.MPK14-mediated auxin signaling controls lateral root development via ERF13-regulated very-long-chain fatty acid biosynthesis[J]. Molecular Plant, 2021, 14(2): 285-297. [31] 孙英杰. MdERF2在苹果表皮蜡质合成中的作用研究[D]. 淄博: 山东理工大学, 2021. Sun Y J.Effect of MdERF2 on waxy synthesis of apple epidermis [D]. Zibo: Shandong University of Technology, 2021. [32] Park C S, Go Y S, Suh M C.Cuticular wax biosynthesis is positively regulated by WRINKLED 4, an AP2/ERF-type transcription factor, in Arabidopsis stems[J]. The Plant Journal, 2016, 88(2): 257-270. [33] Lisso J, Schröder F, Schippers J H M, et al. NFXL2 modifies cuticle properties in Arabidopsis[J]. Plant Signaling & Behavior, 2012, 7(5): 551-555. [34] Bernard A, Joubès J.Arabidopsis cuticular waxes: advances in synthesis, exportand regulation[J]. Progress in Lipid Research, 2013, 52(1): 110-129. [35] 徐劼. 茶树( Xu J.Mechanisms of lead uptake/accumulation and tolerance in tea plant ( [36] 段瑞君, 王爱东, 陈国雄. 植物角质层基因研究进展[J]. 植物学报, 2017, 52(5): 637-651. Duan R J, Wang A D, Chen G X.Advances in study of plant cuticle genes[J]. Chinese Bulletin of Botany, 2017, 52(5): 637-651. [2] 张弋. 茶树叶片角质层蜡质组成特征与角质蒸腾的关系研究[D]. 福州: 福建农林大学, 2020. Zhang Y.Study on the correlation between cuticular wax composition and cuticular transpiration in |
[1] | CUI Qingmei, LIANG Jinbo, MA Huijie, HU Shuangling, CHEN Qinghua, WU Liyun, HE Mengdi, WANG Liubin, TAN Licai, ZHANG Qiang, WANG Liyuan. Genetic Diversity and Population Structure Relationship Analysis of Wild Tea Germplasm Resources in Badong County, Hubei Province [J]. Journal of Tea Science, 2024, 44(2): 193-206. |
[2] | XU Wei, YU Rongxin, ZHANG Xiangchun, ZHANG Yiwen, CHEN Hongping, TIAN Baoming, ZHENG Qinqin, WU Yuanyuan, XIA Chen, WEI Bing. Construction of Polyphenol Self-assembly Antibacterial Biomaterials and Progress in Their Applications [J]. Journal of Tea Science, 2024, 44(1): 1-15. |
[3] | WANG Liubin, WU Liyun, WEI Kang, WANG Liyuan. QTL Mapping and Candidate Gene Analysis for Timing of Spring Bud Flush in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2023, 43(6): 747-756. |
[4] | LIU Dongna, GONG Xuejiao, LI Lanying, HUANG Fan, YAO Yu, XU Yaqiong, GAO Yuan, LUO Fan. Analysis of Photosynthetic and Fluorescence Characteristics of Albino Tea Plants [J]. Journal of Tea Science, 2023, 43(6): 757-768. |
[5] | YANG Jun, ZHANG Lilan, ZHANG Wenjing, CHEN Linhai, ZHENG Guohua, LI Yijing, WANG Rangjian. Population Structure and Genetic Differences of Tea Germplasm Resources in Fujian [J]. Journal of Tea Science, 2023, 43(6): 769-783. |
[6] | LI Yanchun, WANG Yixiang, YE Jing, LI Zhaowei. Changes of Rhizospheric Pathogen Alternaria sp. and Its Antagonistic Bacteria Pseudomonas sp. of Continuous Cropping Tea Plants Mediated by Phenolic Acids [J]. Journal of Tea Science, 2023, 43(6): 823-834. |
[7] | YANG Jihong, ZHOU Hanchen, XU Yujie. Catalytic Function, Promoter Structure and Functional Analysis of CsNUDX1-cyto in Different Tea Cultivars [J]. Journal of Tea Science, 2023, 43(5): 621-630. |
[8] | LIU Hongxia, LIU Yingying, CHEN Hongping, CHAI Yunfeng. Glyphosate-stress Effects on Shikimic Acid in Tea Leaves [J]. Journal of Tea Science, 2023, 43(5): 657-666. |
[9] | TANG Ziyi, DU Yue, YANG Hongbin, LI Xinghui, YU Youben, WANG Weidong. Changes of Endogenous Hormone Contents and Expression Analysis of Related Genes in Leaves of Tea Plants Under Heat and Drought Stresses [J]. Journal of Tea Science, 2023, 43(4): 489-500. |
[10] | HAN Haidong, ZHOU Liuting, HUANG Xiaoyun, YU Chengran, HUANG Xiusheng. The Characteristics of Fungal Community Structure in Tea Rhizosphere Soil Interplanted with Ganoderma lucidum Based on High-throughput Sequencing Technology [J]. Journal of Tea Science, 2023, 43(4): 513-524. |
[11] | SUN Yue, LIU Mengyue, GAO Chenxi, WU Quanjin, CAO Shixian, YU Shuntian, CHEN Zhidan, JIN Shan, SUN Weijiang. Study on the Differences of Leaf Color and Volatiles of Different Insect-resistance Tea Cultivars [J]. Journal of Tea Science, 2023, 43(4): 525-543. |
[12] | LI Jiasi, LIU Yingqing, ZHANG Yongheng, ZHANG Ying'ao, XIAO Yezi, LIU Lu, YU Youben. Identification of Transcription Factors Interacting with CsNCED2 Promoter and Their Response to Abiotic Stress [J]. Journal of Tea Science, 2023, 43(3): 325-334. |
[13] | SHEN Ruihan, MA Lifeng, YANG Xiangde, FANG Li. Effects of Nitrogen Form and Weak Light Stress on Tea Plant Growth and Metabolism [J]. Journal of Tea Science, 2023, 43(3): 349-355. |
[14] | GUO Lina, HAO Xinyuan, WANG Lu, QI Meng, LI Xiaoman, REN Hengze, ZHENG Qinghua, WANG Xinchao, ZENG Jianming. Study on the Characteristics of CsPHT1;3 and Its Response to Selenium in Tea Plants [J]. Journal of Tea Science, 2023, 43(2): 173-182. |
[15] | LI Hongli, ZHOU Tiefeng, MAO Yuxiao, HUANG Haitao, CUI Hongchun, ZHENG Xuxia, ZHAO Yun. Isolation and Identification of Anthracnose Pathogen from Xihu Longjing Plantation and Screening of Its Plant-derived Fungicides [J]. Journal of Tea Science, 2023, 43(2): 194-204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|