Journal of Tea Science ›› 2024, Vol. 44 ›› Issue (2): 231-245.doi: 10.13305/j.cnki.jts.2024.02.004
• Research Paper • Previous Articles Next Articles
WANG Feng1,2, CHANG Yunni1, SUN Jun1, WU Zhidan1,2, CHEN Yuzhen1,2,*, JIANG Fuying1,2, YU Wenquan1,3,*
Received:
2023-09-10
Revised:
2023-12-13
Online:
2024-04-15
Published:
2024-04-30
CLC Number:
WANG Feng, CHANG Yunni, SUN Jun, WU Zhidan, CHEN Yuzhen, JIANG Fuying, YU Wenquan. Seasonal Dynamic Characteristics of Soil Physical and Chemical Properties and Enzyme Activities of Different Planting Patterns in the Wuyishan[J]. Journal of Tea Science, 2024, 44(2): 231-245.
[1] Lenc L, Kwasna H, Grabowski C S A. Microbiota in wheat roots, rhizosphere and soil in crops grown in organic and other production systems[J]. Journal of Phytopathology, 2015, 163: 245-263. [2] 邓先智, 类延宝, 沈杰, 等. 模拟根系分泌物输入对高寒退化草地土壤微生物残体的影响[J]. 生态学报, 2022, 42(20): 8311-8321. Deng X Z, Lei Y B, Shen J, et al.Effects of simulated root exudates input on soil microbial residues in the degraded alpine grassland[J]. Acta Ecologica Sinica, 2022, 42(20): 8311-8321. [3] Burns R G, DeForest J L, Marxsen J, et al. Soil enzymes in a changing environment: current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58: 216-234. [4] Yang Y, Liang C, Wang Y Q, et al.Soil extracellular enzyme stoichiometry reflects the shift from P- to N-limitation of microorganisms with grassland restoration[J]. Soil Biology and Biochemistry, 2020, 149: 107928. doi: 10.1016/j.soilbio.2020.107928. [5] Guo Z M, Zhang X Y, Green S M, et al.Soil enzyme activity and stoichiometry along a gradient of vegetation restoration at the karst critical zone observatory in southwest China[J]. Land Degradation & Development, 2019, 30(16): 1916-1927. [6] 陈彦云, 夏皖豫, 赵辉, 等. 粉垄耕作对耕地土壤酶活性、微生物群落结构和功能多样性的影响[J]. 生态学报, 2022, 42(12): 5009-5021. Chen Y Y, Xia W Y, Zhao H, et al.Effects of deep vertical rotary tillage on soil enzyme activity, microbial community structure and functional diversity of cultivated land[J]. Acta Ecologica Sinica, 2022, 42(12): 5009-5021. [7] Sharma S, Singh P, Choudhary O P, et al.Nitrogen and rice straw incorporation impact nitrogen use efficiency, soil nitrogen pools and enzyme activity in rice-wheat system in north-western India[J]. Field Crops Research, 2021, 266: 108131. doi: 10.1016/j.fcr.2021.108131. [8] Jian S Y, Li J W, Chen J, et al.Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis[J]. Soil Biology and Biochemistry, 2016, 101: 32-43. [9] Moreno J L, Bastida F, Díaz-López M, et al.Response of soil chemical properties, enzyme activities and microbial communities to biochar application and climate change in a Mediterranean agroecosystem[J]. Geoderma, 2022, 407(4): 115536. doi: 10.1016/j.geoderma.2021.115536. [10] Burns R G, DeForest J L, Marxsen J, et al. Soil enzymes in a changing environment: current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58: 216-234. [11] Zhang L P, Jia G M, Xi Y. The soil enzyme activities with age of tea in three gorges reservoir area [J]. Advanced Materials Research, 2014, 989/990/991/992/993/994: 1292-1296. [12] 张海阔, 张宝刚, 周钟昱, 等. 亚热带天然林转变为毛竹林和茶园对土壤胞外酶活性的影响[J]. 农业环境科学学报, 2022, 41(4): 826-833. Zhang H K, Zhang B G, Zhou Z Y, et al.Effects of converting natural forests to Moso bamboo and tea plantations on soil extracellular enzyme activity in subtropical China[J]. Journal of Agro-Environment Science, 2022, 41(4): 826-833. [13] 王晟强, 张喆, 叶绍明. 桂南茶园土壤团聚体酶活性对植茶年限的响应[J]. 生态学报, 2020, 40(18): 6532-6541. Wang S Q, Zhang Z, Ye S M.Response of soil aggregate-associated enzyme activities to tea planting age in the hilly region of southern Guangxi, China[J]. Acta Ecologica Sinica, 2020, 40(18): 6532-6541. [14] 姜虹, 沙丽清. 云南澜沧县景迈古茶园土壤养分和土壤酶活性研究[J]. 茶叶科学, 2008, 28(3): 214-220. Jiang H, Sha L Q.Characteristics of soil nutrients and enzyme activity of ancient tea garden in Jingmai, Lancang, Yunnan Province [J ]. Journal of Tea Science, 2008, 28(3): 214-220. [15] 王利民, 李卫华, 范平, 等. 长期培肥下红黄壤区茶园土壤酶活性的变化[J]. 茶叶科学, 2012, 32(4): 347-352. Wang L M, Li W H, Fan P, et al.Variation in soil enzyme activities under long-term fertilization of tea garden in red-yellow soil area[J]. Journal of Tea Science, 2012, 32(4): 347-352. [16] 汪洋, 杨殿林, 王丽丽, 等. 茶园多植物覆盖种植对土壤酶活性和有机碳矿化特征的影响[J]. 农业资源与环境学报, 2020, 37(3): 371-380. Wang Y, Yang D L, Wang L L, et al.Effects of cover crops on soil enzyme activity and organic carbon mineralization in a tea plantation[J]. Journal of Agricultural Resources and Environment, 2020, 37(3): 371-380. [17] Maharjan M, Sanaullah M, Razavi B S, et al.Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top-and sub-soils[J]. Applied Soil Ecology, 2017, 113: 22-28. [18] 王峰, 陈玉真, 吴志丹, 等. 有机管理模式对茶园土壤真菌群落结构及功能的影响[J]. 茶叶科学, 2022, 42(5): 672-688. Wang F, Chen Y Z, Wu Z D, et al.Effects of organic management mode on soil fungal community structure and functions in tea gardens[J]. Journal of Tea Science, 2022, 42(5): 672-688. [19] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. Lu R K.Analysis method in soil agricultural chemistry [M]. Beijing: China Agricultural Science and Technology Press, 2000. [20] Hou Q, Wang W X, Yang Y, et al.Rhizosphere microbial diversity and community dynamics during potato cultivation[J]. European Journal of Soil Biology, 2020, 98: 103176. doi: 10.1016/j.ejsobi.2020.103176. [21] Tedersoo L, Bahram M, Põlme S, et al.Global diversity and geography of soil fungi[J]. Science, 2014, 36: 6213. doi: 10.1126/science.1256688. [22] Morrison-Whittle P, Lee S A, Goddard M R.Fungal communities are differentially affected by conventional and biodynamic agricultural management approaches in vineyard ecosystems[J]. Agriculture, Ecosystems Environment, 2017, 246: 306-313. [23] Tsiafouli M A, Thébault E, Sgardelis S P, et al.Intensive agriculture reduces soil biodiversity across Europe[J]. Global Change Biology, 2015, 21: 973-985. [24] Chen J W, Li J W, Yang Y R, et al.Effects of conventional and organic agriculture on soil arbuscular mycorrhizal fungal community in low-quality farmland[J]. Frontiers in Microbiology, 2022, 13: 914627. doi: 10.3389/fmicb.2022. 914627. [25] 仝利红, 蒋珊, 祝凌, 等. 有机种植对温室土壤有机碳库和酶活性的影响[J]. 中国土壤与肥料, 2020(6): 75-82. Tong L H, Jiang S, Zhu L, et al.Effects of organic planting on soil carbon pool and enzyme activity in greenhouse[J]. Soils and Fertilizers Sciences in China, 2020(6): 75-82. [26] Stazi S R, Mancinelli R, Marabottini R, et al.Influence of organic management on As bioavailability: soil quality and tomato As uptake[J]. Chemosphere, 2018, 211: 352-359. [27] 李思萌, 于军, 周正立, 等. 有机种植对土壤主要理化性质及重金属含量的影响[J]. 江苏农业科学, 2017, 45(2): 253-257. Li S M, Yu J, Zhou Z L, et al.Effect of organic planting on the main physical and chemical properties of soil and heavy metal content[J]. Jiangsu Agricultural Sciences, 2017, 45(2): 253-257. [28] Bai Z G, Caspari T, Gonzalez M R, et al.Effects of agricultural management practices on soil quality: a review of long-term experiments for Europe and China[J]. Agriculture, Ecosystems Environment, 2018, 265: 1-7. [29] 曹春霞, 朱升海, 颜越, 等. 有机管理对不同土地利用方式下土壤质量的影响[J]. 中国生态农业学报(中英文), 2021, 29(3): 474-482. Cao C X, Zhu S H, Yan Y, et al.Effect of organic management on soil quality under different land use types[J]. Chinese Journal of Eco-Agriculture, 2021, 29(3): 474-482. [30] Lori M, Symnaczik S, Mäder P, et al.Organic farming enhances soil microbial abundance and activity: a meta-analysis and meta-regression[J]. PLoS One, 2017, 12(7): e0180442. doi: 10.1371/journal.pone.0180442. [31] 颜鹏, 韩文炎, 李鑫, 等. 中国茶园土壤酸化现状与分析[J]. 中国农业科学, 2020, 53(4): 795-801. Yan P, Han W Y, Li X, et al.Present situation and analysis of soil acidification in Chinese tea garden[J]. Scientia Agricultura Sinica, 2020, 53(4): 795-801. [32] 陈彬彬, 王宏, 郑秋萍, 等. 福建省区域酸雨特征及成因分析[J]. 气象与环境学报, 2016, 32(4): 70-76. Chen B B, Wang H, Zheng Q P, et al.Characteristics and causes of regional acid rain in Fujian province[J]. Journal of Meteorology and Environment, 2016, 32(4): 70-76. [33] 阮建云, 吴洵. 钾、镁营养供应对茶叶品质和产量的影响[J]. 茶叶科学, 2003, 23(s1): 21-26. Ruan J Y, Wu X.Productivity and quality response of tea to balanced nutrient management including K and Mg[J]. Journal of Tea Science, 2003, 23(s1): 21-26. [34] 吴洵. 第四纪低丘红壤茶园钾的成土迁移和丰缺诊断[J]. 茶叶科学, 1994, 14(1): 9-16. Wu X.Movement of potassium in the soil during its development from quaternary red clay and the diagnosis of potassium deficiency in tea gardens of low-hilly red-earth areas[J]. Journal of Tea Science, 1994, 14(1): 9-16. [35] 韩文炎, 阮建云, 林智. 茶园土壤主要营养障碍因子及系列茶树专用肥的研制[J]. 茶叶科学, 2002, 22(1): 70-77, 65. Han W Y, Ruan J Y, Lin Z.The major nutritional limitingfactors in tea soils and development of tea speciality fertilizer series[J]. Journal of Tea Science, 2002, 22(1): 70-74, 65. [36] 张福锁. 协调作物高产与环境保护的养分资源综合管理技术研究与应用[M]. 北京: 中国农业大学出版社, 2008. Zhang F S.Study and application of integrated nutrient management synchronizing high yield and environment protection [M]. Beijing: China Agricultural University Press, 2008. [37] 陈玉真, 王峰, 吴志丹, 等. 林地转变为茶园对土壤细菌群落结构与多样性的影响[J]. 西北农林科技大学学报(自然科学版), 2020, 48(4): 97-106. Chen Y Z, Wang F, Wu Z D, et al.Effects of forestland to tea garden conversion on soil bacterial community and diversity[J]. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(4): 97-106. [38] 陈玉真, 王峰, 吴志丹, 等. 林地转变为茶园对土壤固氮菌群落结构及多样性的影响[J]. 应用与环境生物学报, 2020, 26(5): 1096-1106. Chen Y Z, Wang F, Wu Z D, et al.Effects of soil nitrogen-fixing bacteria community and diversity after converting forestland into tea garden[J]. Chinese Journal of Applied & Environmental Biology, 2020, 26(5): 1096-1106. [39] 杨亚军. 中国茶树栽培学[M]. 上海: 上海科学技术出版社, 2005: 374-432. Yang Y J.Tea cultivation science in China [M]. Shanghai: Shanghai Science and Technology Press, 2005: 374-432. [40] Fan Z Z, Lu S Y, Liu S, et al.The effects of vegetation restoration strategies and seasons on soil enzyme activities in the Karst landscapes of Yunnan, southwest China[J]. Journal of Forestry Research, 2020, 31(5): 1949-1957. [41] Zhao Z W, Ge T D, Gunina A, et al.Carbon and nitrogen availability in paddy soil affects rice photosynthate allocation, microbial community composition, and priming: combining continuous 13C labeling with PLFA analysis[J]. Plant and Soil, 2019, 445(1/2): 137-152. [42] Qin X, Liu Y T, Huang Q Q, et al.Effects of sepiolite and biochar on enzyme activity of soil contaminated by Cd and atrazine[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(5): 642-648. [43] Zhou Z H, Wang C K, Jin Y.Stoichiometric responses of soil microflora to nutrient additions for two temperate forest soils[J]. Biology and Fertility of Soils, 2017, 53(4): 397-406. [44] 王海斌, 陈晓婷, 丁力, 等. 连作茶树根际土壤自毒潜力, 酶活性及微生物群落功能多样性分析[J]. 热带作物学报, 2018, 39(5): 26-31. Wang H B, Chen X T, Ding L, et al.Analysis on autotoxic potential, enzyme activity and microbial community function diversity of the rhizosphere soils from tea plants with continuous cropping years[J]. Chinese Journal of Tropical Crops, 2018, 39(5): 26-31. [45] 张英, 武淑霞, 雷秋良, 等. 不同类型粪肥还田对土壤酶活性及微生物群落的影响[J]. 土壤, 2022, 54(6): 1175-1184. Zhang Y, Wu S X, Lei Q L, et al.Effects of different manures on soil enzyme activity and microbial community[J]. Soils, 2022, 54(6): 1175-1184. [46] 王文婷, 王蓉, 牛翠平, 等. 西双版纳农林复合橡胶林土壤多营养级生物网络结构[J]. 生物多样性, 2023, 31(6): 132-145. Wang W T, Wang R, Niu C P, et al.Soil multitrophic ecological network structure of agroforestry rubberplantation in Xishuangbanna[J]. Biodiversity Science, 2023, 31(6): 132-145. [47] Liu C A, Nie Y, Zhang Y M, et al.Introduction of a leguminous shrub to a rubber plantation changed the soil carbon and nitrogen fractions and ameliorated soil environment[J]. Scientific Reports, 2018, 8: 17324. doi: 10.1038/s41598-018-35762-0. [48] 王鹏, 祝丽香, 陈香香, 等. 桔梗与大葱间作对土壤养分、微生物区系和酶活性的影响[J]. 植物营养与肥料学报, 2018, 24(3): 668-675. Wang P, Zhu L X, Chen X X, et al.Effects of [49] Chen L X, Zhang C, Duan W B.Temporal variations in phosphorus fractions and phosphatase activities in rhizosphere and bulk soil during the development of [50] Hou E Q, Luo Y Q, Kuang Y W, et al.Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems[J]. Nature Communications, 2020, 11: 637. doi: 10.1038/s41467-020- 14492-w. [51] Fan Y X, Lin F, Yang L M, et al.Decreased soil organic P fraction associated with ectomycorrhizal fungal activity to meet increased P demand under N application in a subtropical forest ecosystem[J]. Biology and Fertility of Soils, 2018, 154: 149-161. [52] Zhang G N, Chen Z, Zhang A, et al.Phosphorus composition and phosphatase activities in soils affected by long-term application of pig manure and inorganic fertilizers[J]. Communications in Soil Science and Plant Analysis, 2014, 45(14): 1866-1876. [53] Chen Y X, Wei T X, Sha G L, et al.Soil enzyme activities of typical plant communities after vegetation restoration on the Loess Plateau, China[J]. Applied Soil Ecology, 2022(170): 104292. doi: 10.1016/j.apsoil.2021.104292. [54] 王瑞, 宋祥云, 柳新伟. 黄河三角洲不同植被类型土壤酶活性的季节变化[J]. 生态环境学报, 2022, 31(1): 62-69. Wang R, Song X Y, Liu X W.Seasonal characteristics of soil enzymes in different vegetations in the Yellow River Delta[J]. Ecology and Environmental Sciences, 2022, 31(1): 62-69. [55] 杨海滨, 李中林, 邓敏, 等. 不同施肥措施对重庆茶园土壤氮转化酶活性的影响[J]. 应用与环境生物学报, 2020, 26(5): 1107-1114. Yang H B, Li Z L, Deng M, et al.Effects of the combined application of different fertilizers and urea on nitrogen transformation enzyme activities in tea-garden soil from Chongqing[J]. Chinese Journal of Applied & Environmental Biology, 2020, 26(5): 1107-1114 [56] 刘谣, 刘金超, 宋钰珑, 等. 季节变化对川西亚高山森林土壤酶活性及化学计量特征的影响[J]. 四川农业大学学报, 2023, 41(3): 456-463. Liu Y, Liu J C, Song Y L, et al.Effects of seasonal changes on soil enzyme activities and their stoichiometric characteristics of subalpine forests in Western Sichuan[J]. Journal of Sichuan Agricultural University, 2023, 41(3): 456-463. [57] Zhao S C, Li K J, Zhou W, et al.Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China[J]. Agriculture, Ecosystems & Environment, 2016, 216: 82-88. [58] Dick W A, Cheng L, Wang P.Soil acid and alkaline phosphatase activity as pH adjustment indicators[J]. Soil Biology and Biochemistry, 2000, 32(13): 1915-1919. [59] 曹瑞, 杨万勤, 袁吉, 等. 马尾松人工林土壤有机层和矿质土壤层酶活性随雨旱季的变化[J]. 生态学报, 2022, 42(19): 8031-8040. Cao R, Yang W Q, Yuan J, et al.Changes of soil enzyme activities in soil organic layer and mineral soil layer in the Masson pine plantation with critical periods[J]. Acta Ecologica Sinica, 2022, 42(19): 8031-8040. [60] Wang Y F, Zheng M H, Wang S H, et al.Effects of long-term nitrogen and phosphorus additions on soil enzyme activities related N and P cycle in two plantations in South China[J]. Journal of Tropical and Subtropical Botany, 2022, 29(3): 244-250. [61] 贾曼莉, 郭宏, 李会科. 渭北生草果园土壤有机碳矿化及其与土壤酶活性的关系[J]. 环境科学, 2014, 35(7): 2777-2784. Jia M L, Guo H, Li H K.Mineralization of soil organic carbon and its relationship with soil enzyme activities in apple orchard in Weibei[J]. Environmental Science, 2014, 35(7): 2777-2784. [62] Wang S X, Liang X Q, Chen Y X, et al.Phosphorus loss potential and phosphatase activity under phosphorus fertilization in long-term paddy wetland agroecosystems[J]. Soil Science Society of America Journal, 2012, 76(1): 161-167. [63] Richardson A E, Simpson R J.Soil microorganisms mediating phosphorus availability update on microbial phosphorus[J]. Plant Physiology, 2011, 156(3): 989-996. [64] Tan H, Barret M, Mooij M J, et al.Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the [65] Liu X C, Zhang S T.Nitrogen addition shapes soil enzyme activity patterns by changing pH rather than the composition of the plant and microbial communities in an alpine meadow soil[J]. Plant and Soil, 2019, 440(1): 11-24. |
[1] | WANG Feng, CHEN Yuzhen, WU Zhidan, JIANG Fuying, ZHANG Wenjin, WENG Boqi, YOU Zhiming. Effect of Biochar Addition on Ammonia Volatilization in Acid Tea Garden [J]. Journal of Tea Science, 2017, 37(1): 60-70. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|