Journal of Tea Science ›› 2024, Vol. 44 ›› Issue (4): 585-597.doi: 10.13305/j.cnki.jts.2024.04.002
• Research Paper • Previous Articles Next Articles
LUO Wei1, ZHANG Jiaqi2, YANG Ni1, HU Zhihang1, HAO Jiannan1, LIU Hui2, TAN Shanshan2, ZHUANG Jing1,*
Received:
2024-03-06
Revised:
2024-06-08
Online:
2024-08-15
Published:
2024-09-03
CLC Number:
LUO Wei, ZHANG Jiaqi, YANG Ni, HU Zhihang, HAO Jiannan, LIU Hui, TAN Shanshan, ZHUANG Jing. Identification and Tissue Expression Analysis of Sucrose Transporter (SUT) Gene Family in Camellia sinensis[J]. Journal of Tea Science, 2024, 44(4): 585-597.
[1] 刘春方, 刘文艳, 滕瑞敏, 等. 茶树转录因子 Liu C F, Liu W Y, Teng R M, et al.Identification and response analysis of the [2] 何颖. 茶树光合氮素利用效率及其影响因素研究[D]. 南京: 南京农业大学, 2022. He Y.Photosythetic nitrogen use efficiency of tea and its affecting factors [D]. Nanjing: Nanjing Agricultural University, 2022. [3] 耿艳秋, 董肖昌, 张春梅. 园艺作物糖转运蛋白研究进展[J]. 园艺学报, 2021, 48(4): 676-688. Geng Y Q, Dong X C, Zhang C M.Research progress of sugar transporters in horticultural crops[J]. Acta Horticulturae Sinica, 2021, 48(4): 676-688. [4] Xu X Y, Yang Y H, Liu C X, et al.The evolutionary history of the sucrose synthase gene family in higher plants[J]. BMC Plant Biology, 2019, 19(1): 566. doi: 10.1186/s12870-019-2181-4. [5] Wen S, Neuhaus H E, Cheng J, et al.Contributions of sugar transporters to crop yield and fruit quality[J]. Journal of Experimental Botany, 2022, 73(8): 2275-2289. [6] 涂文睿, 蔡昱萌, 颜婧, 等. 植物蔗糖转运蛋白及其生理功能的研究进展[J]. 生物技术通报, 2017, 33(4): 1-7. Tu W R, Cai Y M, Yan J, et al.Research progresses on plant sucrose transporters and physiological functions[J]. Biotechnology Bulletin, 2017, 33(4): 1-7. [7] Slewinski T, Garg A, Johal G, et al.Maize [8] Kühn C, Grof C P.Sucrose transporters of higher plants[J]. Current Opinion in Plant Biology, 2010, 13(3): 287-297. [9] Weise A, Barker L, Kühn C, et al.A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants[J]. The Plant Cell, 2000, 12(8): 1345-1355. [10] Aoki N, Hirose T, Scofield G N, et al.The sucrose transporter gene family in rice[J]. Plant and Cell Physiology, 2003, 44(3): 223-232. [11] Zhang H P, Zhang S J, Qin G H, et al.Molecular cloning and expression analysis of a gene for sucrose transporter from pear ( [12] Deol K K, Mukherjee S, Gao F, et al.Identification and characterization of the three homeologues of a new [13] 寿伟松, 王铎, 沈佳, 等. 西瓜蔗糖转运蛋白 Shou W S, Wang D, Shen J, et al.Identification and expression analysis of sucrose transporter [14] Hirose T, Zhang C J, Miyao A, et al.Disruption of a gene for rice sucrose transporter, [15] 张玲. 草莓蔗糖代谢与转运相关基因对果实糖分积累的影响机理[D]. 兰州: 甘肃农业大学, 2018. Zhang L.The effect of genes for sucrose metabolism and transportion on fruit sugar accumulation in strawberry ( [16] Chincinska I, Gier K, Krügel U, et al.Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production[J]. Frontiers in Plant Science, 2013, 4: 26. doi: 10.3389/fpls.2013.00026. [17] Payyavula R S, Tay K H, Tsai C J, et al.The sucrose transporter family in [18] 张玉梅, 胡润芳, 林国强. 菜用大豆蔗糖转运蛋白基因家族的克隆及表达分析[J]. 中国细胞生物学学报, 2018, 40(11): 1876-1885. Zhang Y M, Hu R F, Lin G Q.Gene clone and expression analysis of sucrose transporter gene family from vegetable soybean[J]. Chinese Journal of Cell Biology, 2018, 40(11): 1876-1885. [19] Radchuk V, Riewe D, Peukert M, et al.Down-regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains[J]. Journal of Experimental Botany, 2017, 68(16): 4595-4612. [20] 李孟珠, 王高鹏, 巫月, 等. 水稻蔗糖转运蛋白OsSUT4参与蔗糖转运的功能研究[J]. 中国水稻科学, 2020, 34(6): 491-498. Li M Z, Wang G P, Wu Y, et al.Function analysis of sucrose transporter OsSUT4 in sucrose transport in rice[J]. Chinese Journal of Rice Science, 2020, 34(6): 491-498. [21] Wang Z, Wei P, Wu M Z, et al.Analysis of the sucrose synthase gene family in tobacco: structure, phylogeny, and expression patterns[J]. Planta, 2015, 242(1): 153-166. [22] Frost C J, Nyamdari B, Tsai C J, et al.The tonoplast-localized sucrose transporter in [23] Gong X, Liu M, Zhang L, et al.Arabidopsis [24] 晁毛妮, 王斌, 陈煜, 等. 陆地棉蔗糖转运蛋白基因家族的鉴定及表达分析[J]. 西北植物学报, 2020, 40(8): 1303-1312. Chao M N, Wang B, Chen Y, et al.Identification and expression analysis of sucrose transporter gene family in upland cotton ( [25] 谷梦雅, 王鹏杰, 金珊, 等. 基于转录组分析不同强度红光对茶树苯丙烷类代谢的影响[J]. 应用与环境生物学报, 2021, 27(6): 1636-1644. Gu M Y, Wang P J, Jin S, et al.Effects of different red LED light intensities on phenylpropanoid metabolism of tea plants based on transcriptomics[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(6): 1636-1644. [26] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the method[J]. Methods, 2001, 25(4): 402-408. [27] Yan N.Structural advances for the major facilitator superfamily (MFS) transporters[J]. Trends in Biochemical Sciences, 2013, 38(3): 151-159. [28] Chen W Q, Diao W P, Liu H Q, et al.Molecular characterization of [29] 姚慧玲, 范海阔, 刘蕊, 等. 椰子 Yao H L, Fan H K, Liu R, et al.Bioinformatics and expression analysis of coconut [30] 岳川. 茶树糖类相关基因的挖掘及其在茶树冷驯化中的表达研究[D]. 北京: 中国农业科学院, 2016. Yue C.Cloning and expression analysis of sugar-related genes during cold acclimation in tea plants [D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. [31] Ruan Y L.Sucrose metabolism: gateway to diverse carbon use and sugar signaling[J]. Annual Review of Plant Biology, 2014, 65(1): 33-67. [32] Deng B, Gu X, Chen S, et al.Genome-wide analysis and characterization of [33] Ma X, Chang Y, Li F, et al.CsABF3-activated [34] Liang Y, Bai J, Xie Z, et al.Tomato sucrose transporter SlSUT4 participates in flowering regulation by modulating gibberellin biosynthesis[J]. Plant Physiology, 2023, 192(2): 1080-1098. [35] Zhao Z, Wang C, Yu X, et al.Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice[J]. PNAS, 2022, 119(36): e2121671119. doi: 10.1073/pnas.2121671119. [36] 韩静静. 牡丹蔗糖转运蛋白基因 Han J J.Cloning of the promoter of the sucrose transporter protein gene [37] Scofield G N, Aoki N, Hirose T, et al.The role of the sucrose transporter, [38] Lu M, Snyder R, Grant J, et al.Manipulation of sucrose phloem and embryo loading affects pea leaf metabolism, carbon and nitrogen partitioning to sinks as well as seed storage pools[J]. The Plant Journal, 2020, 101(1): 217-236. [39] Jia W, Zhang L, Wu D, et al.Sucrose transporter AtSUC9 mediated by a low sucrose level is involved in Arabidopsis abiotic stress resistance by regulating sucrose distribution and ABA accumulation[J]. Plant and Cell Physiology, 2015, 56(8): 1574-1587. [40] Barker L, Kühn C, Weise A, et al.SUT2, a putative sucrose sensor in sieve elements[J]. The Plant Cell, 2000, 12(7): 1153-1164. [41] Ma Q, Sun M, Kang H, et al.A CIPK protein kinase targets sucrose transporter MdSUT2.2 at Ser for phosphorylation to enhance salt tolerance[J]. Plant, Cell and Environment, 2019, 42(3): 918-930. [42] Li J W, Wang Y, Suh J H.Multi-omics approach in tea polyphenol research regarding tea plant growth, development and tea processing: current technologies and perspectives[J]. Food Science and Human Wellness, 2022, 11(3): 524-536. [43] 杨霁虹, 周汉琛, 徐玉婕. 不同茶树品种中 Yang J H, Zhou H C, Xu Y J.Catalytic function, promoter structure and functional analysis of |
[1] | LONG Lu, TANG Dandan, CHEN Wei, TAN Liqiang, CHEN Shengxiang, TANG Qian. Identification and Expression Pattern Analysis of STOP Gene Family in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2024, 44(3): 386-398. |
[2] | YIN Minghua, ZHANG Jiaxin, LE Yun, HE Fanfan, HUANG Tianhui, ZHANG Mutong. Genomic Characteristics, Codon Preference, and Phylogenetic Analysis of Chloroplasts of Camellia sinensis cv. ‘Damianbai’ [J]. Journal of Tea Science, 2024, 44(3): 411-430. |
[3] | ZHONG Sitong, ZHANG Yazhen, YOU Xiaomei, CHEN Zhihui, KONG Xiangrui, LIN Zhenghe, WU Huini, JIN Shan, CHEN Changsong. Identification of CAB Gene Family and Excavation of Key Genes Related to Leaf Yellowing Variationin Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2024, 44(2): 175-192. |
[4] | HUANG Mengdi, CHEN Lan, SU Qin, HU Jinyu, LIU Guizhi, TAN Yueping, LIU Shuoqian, TIAN Na. The Development of CAPS Molecular Markers for CsAL1, A Gene Associated with Early and Late Spring Tip Emergence in Tea Plants [J]. Journal of Tea Science, 2024, 44(2): 207-218. |
[5] | LI Qinghui, LI Rui, WEN Xiaoju, NI Dejiang, WANG Mingle, CHEN Yuqiong. Selection and Validation of Internal Reference Genes for qRT-PCR Analysis under Fluoride Stress in Camellia sinensis Leaves [J]. Journal of Tea Science, 2024, 44(1): 27-36. |
[6] | WU Shuhua, MAO Kaiquan, CHEN Jiaming, LI Jianlong, XUE Jinghua, ZENG Lanting, YANG Yuhua, GU Dachuan. Study on the Influence of Tea Green Leafhopper Infestation on the Tenderness of Fresh Tea Leaves and the Extraction Rate of Metabolites Related to Oolong Tea Quality [J]. Journal of Tea Science, 2023, 43(6): 806-822. |
[7] | MAO Chun, HE Ji, WEN Xuefeng, WU Chuanmei, YI Chengxi, LIAN Jianhong, GUO Wenmin. Advances in the Application of Metabolomics in the Study of Physiological and Biochemical Metabolism of Tea Plants [Camellia sinensis (L.) O. Kuntze] [J]. Journal of Tea Science, 2023, 43(5): 607-620. |
[8] | YANG Jihong, ZHOU Hanchen, XU Yujie. Catalytic Function, Promoter Structure and Functional Analysis of CsNUDX1-cyto in Different Tea Cultivars [J]. Journal of Tea Science, 2023, 43(5): 621-630. |
[9] | LI Congcong, WANG Haoqian, YE Yufan, CHEN Yao, REN Hengze, LI Yuteng, HAO Xinyuan, WANG Xinchao, CAO Hongli, YUE Chuan. Study on the Regulation Roles of Plant Hormones on the Growth and Development of Tea Shoots in Spring [J]. Journal of Tea Science, 2023, 43(3): 335-348. |
[10] | MENG Rongjun, CHEN Liang, XU Yuan, LIN Wei, ZHOU Qiwei, XIE Yilin, LAI Dingqing, LAI Jiaye. Genetic Diversity Analysis of Tea Genetic Resources in Sanjiang, Guangxi [J]. Journal of Tea Science, 2023, 43(2): 147-158. |
[11] | CHEN Zhenyan, ZHANG Xiangqin, CHEN Lan, XIE Siyi, LIU Shuoqian, TIAN Na. Identification and Expression Pattern Analysis of NUDIX Gene Family in Camellia sinensis [J]. Journal of Tea Science, 2023, 43(2): 159-172. |
[12] | HU Zhihang, QIN Zhiyuan, LI Jingwen, YANG Ni, CHEN Yi, LI Tong, ZHUANG Jing. Identification of the Light-harvesting Chlorophyll-protein Complex Gene CsLhcb2 and Its Response to Low Temperature in Tea Plants [J]. Journal of Tea Science, 2023, 43(2): 183-193. |
[13] | GAI Shujie, WANG Yixiong, LI Lan, LIU Shuoqian, LI Yinhua, CHENG Xiao, XIA Mao, LIU Zhonghua, ZHOU Zhi. Research Progress of Tea Plant (Camellia sinensis) Growth under Light Regulation [J]. Journal of Tea Science, 2022, 42(6): 753-767. |
[14] | WANG Liubin, HUANG Liyun, TENG Cuiqin, WU Liyun, CHENG Hao, YU Cuiping, WANG Liyuan. Genetic and Phylogenetic Analysis for Germplasm Resources of Camellia sinensis from Wuzhou City [J]. Journal of Tea Science, 2022, 42(5): 601-609. |
[15] | ZHOU Hanchen, YANG Jihong, XU Yujie, WU Qiong, LEI Pandeng. Phylogenetic Analysis of NUDX1 Gene Involved in Geraniol Biosynthesis [J]. Journal of Tea Science, 2022, 42(5): 638-648. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|