Journal of Tea Science ›› 2019, Vol. 39 ›› Issue (1): 1-10.doi: 10.13305/j.cnki.jts.2019.01.001
LIU Ying1,2, HAO Xinyuan2, ZHENG Mengxia2, WANG Xinchao2, XIAO Bin1,*, YANG Yajun1,2,*
Revised:
2018-07-03
Online:
2019-02-15
Published:
2019-07-17
CLC Number:
LIU Ying, HAO Xinyuan, ZHENG Mengxia, WANG Xinchao, XIAO Bin, YANG Yajun. Recent Advances on Tea Flowering Mechanisms[J]. Journal of Tea Science, 2019, 39(1): 1-10.
[1] Boss PK, Bastow RM, Mylne JS, et al.Multiple pathways in the decision to flower: enabling, promoting, and resetting[J]. Plant Cell, 2004, 16(Suppl): S18-S31. [2] Wang JW, Czech B, Weigel D.MiR156-regulated SPL transcription factors define an endogenous flowering pathway in [3] Valverde F, Mouradov A, Soppe W, et al.Photoreceptor regulation of CONSTANS protein in photoperiodic flowering[J]. Science, 2004, 303(5660): 1003. [4] Garner WW, Allard HA.Effect of the relative length of day and night and other factors of the environment on growth and reproduction in PLANTS1[J]. Mon Weather Rev, 2009, 48(2): 157-158. [5] Corbesier L, Vincent C, Jang S, et al.FT protein movement contributes to long-distance signaling in floral induction of [6] Simpson GG, Dean C.The Rosetta stone of flowering time[J]. Genome Biol, 2002, 1(5): 181-200. [7] Hemming MN, Peacock WJ, Dennis ES, et al.Low-temperature and daylength cues are integrated to regulate [8] Kim JJ, Lee JH, Kim W, et al.The [9] Kumimoto R, Adam L, Hymus G, et al.The nuclear factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis[J]. Planta, 2008, 228(5): 709-723. [10] Kumimoto RW, Zhang Y, Siefers N, et al.NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod‐dependent flowering in [11] Siriwardana CL, Gnesutta N, Kumimoto RW, et al.Nuclear factor Y, Subunit A (NF-YA) proteins positively regulate flowering and act through [12] Suárezlópez P, Wheatley K, Robson F, et al.CONSTANS mediates between the circadian clock and the control of flowering in [13] Nelson DC, Lasswell J, Rogg LE, et al. [14] Mizoguchi T, Wright L, Fujiwara S, et al.Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in [15] Fornara F, Panigrahi KC, Gissot L, et al. [16] Jung J, Seo Y, Seo PJ, et al.The [17] 郝心愿. 茶树越冬芽休眠的分子机理研究[D]. 杨凌: 西北农林科技大学, 2015. [18] Wei C, Yang H, Wang S, et al.Draft genome sequence of [19] 李娅莉. 不同光周期对山茶花成花影响的研究[D]. 雅安: 四川农业大学, 2005. [20] Finnegan EJ, Genger RK, Kovac K, et al.DNA methylation and the promotion of flowering by vernalization[J]. Proc Natl Acad Sci USA, 1998, 95(10): 5824-5829. [21] Koornneef M, Alonsoblanco C, Peeters AJ, et al.Genetic control of flowering time in [22] Gendall AR, Levy YY, Wilson A, et al.The [23] Bastow R, Mylne JS, Lister, C, et al.Vernalization requires epigenetic silencing of [24] Sung S, Amasino RM.Vernalization in [25] Sung S, Amasino RM.Vernalization and epigenetics: how plants remember winter[J]. Curr Opin Plant Biol, 2004, 7(1): 4-10. [26] Tabuenca MC.Winter chilling requirements of European plum varieties ( [27] Ghrab M, Mimoun MB, Masmoudi MM, et al.Chilling trends in a warm production area and their impact on flowering and fruiting of peach trees[J]. Sci Hortic, 2014, 178, 87-94. [28] Marquardt S, Boss PK, Hadfield J, et al.Additional targets of the [29] Michaels SD, Amasino RM.Loss of [30] Bäurle I, Smith L, Baulcombe DC, et al.Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing[J]. Science, 2007, 318(5847): 109-112. [31] Sonmez C, Bäurle I, Magusin A, et al.RNA 3' processing functions of [32] Liu F, Quesada V, Crevillen P, et al.The [33] He Y, Michaels SD, Amasino RM.Regulation of flowering time by histone acetylation in [34] AusãN I, Alonso-Blanco C, Jarillo JA, et al(2004). Regulation of flowering time by FVE, a retinoblastoma-associated protein[J]. Nat Genet, 2004, 36(2): 162-166. [35] Lee I, Aukerman MJ, Gore SL, et al.Isolation of [36] Aukerman MJ, Lee I, Weigel D, et al.The Arabidopsis flowering-time gene [37] Lim MH, Kim J, Kim YS, et al.A new Arabidopsis gene, [38] Mockler TC, Yu X, Shalitin D, et al.Regulation of flowering time in [39] 李合生. 现代植物生理学[M]. 3版. 北京: 高等教育出版社, 2006: 231. [40] Monselise SP.Recent advances in the understanding of flower formation in fruit trees and its hormonal control[J]. Acta Hortic, 1973, 34: 157-166. [41] 黄亚辉, 粟本文, 曾贞, 等. 外源激素调控茶树成花的研究[J]. 茶叶通讯, 2002 (4): 3-6. [42] 岳川, 曾建明, 曹红利, 等. 茶树赤霉素受体基因 [43] Thomas SG, Hu J, Dill A, et al.DELLA proteins and gibberellin-regulated seed germination and floral development in [44] Pysh LD, Wysockadiller JW, Camilleri C, et al.The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the [45] 虞莎, 王佳伟. miR156介导的高等植物年龄途径研究进展[J]. 科学通报, 2014, 59(15): 1398-1404. [46] Wang JW.Regulation of flowering time by the miR156-mediated age pathway[J]. J Exp Bot, 2014, 65(17): 4723-4730. [47] Chen XB, Zhang ZL, Liu DM, et al. [48] Preston JC, Hileman LC.Functional evolution in the plant [49] Wu G, Poethig RS.Temporal regulation of shoot development in [50] Wei Q, Ma C, Xu Y, et al.Control of chrysanthemum flowering through integration with an aging pathway[J]. Nat Commun, 2017, 8(1): 829. DOI: 10.1038/s41467- 017-00812-0. [51] 刘亚芹, 田坤红, 孙琪璐, 等. 茶树miR156a靶基因 [52] Borner R, Kampmann G, Chandler J, et al.A MADS domain gene involved in the transition to flowering in [53] Moon J, Suh SS, Lee H, et al.The [54] Jung JH, Ju Y, Seo PJ, et al.The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis[J]. Plant J Cell Mol Biol, 2012, 69(4): 577-588. [55] Tao Z, Shen L, Liu C, et al.Genome-wide identification of [56] Hepworth SR, Valverde F, Ravenscroft D, et al.Antagonistic regulation of flowering-time gene [57] Lee SG, Felker P.Influence of water/heat stress on flowering and fruiting of mesquite ( [58] Corrales AR, Nebauer SG, Carrillo L, et al.Characterization of tomato cycling dof factors reveals conserved and new functions in the control of flowering time and abiotic stress responses[J]. J Exp Bot, 2014, 65(4): 995-1012. [59] Kai F, Dongmei F, Zhaotang D, et al.Cs-miR156 is involved in the nitrogen form regulation of catechins accumulation in tea plant ( [60] 王常红, 汪东风. 稀土对茶树生殖生长的影响[J]. 茶叶科学, 2000, 20(1): 55-58. [61] 杨亚军. 中国茶树栽培学[M]. 上海: 上海科学技术出版社, 2005: 74. [62] Jia S, Wang Y, Hu J, et al.Mineral and metabolic profiles in tea leaves and flowers during flower development[J]. Plant Physiol Biochem, 2016, 106: 316-326. [63] Liu F, Wang Y, Ding Z, et al.Transcriptomic analysis of flower development in tea [ [64] 江昌俊. 茶树花芽分化和胚胎发育的解剖学研究[D]. 合肥: 安徽农业大学, 1987. [65] 严学成. 茶树形态结构与品质鉴定[M]. 北京: 农业出版社, 1990: 67. [66] 王丽娜, 刘青林. 花序分生组织特性基因 [67] Hao XY, Yang YJ, Yue, C, et al.Comprehensive transcriptome analyses reveal differential gene expression profiles of [68] Liu C, Teo ZWN, Bi Y, et al.A conserved genetic pathway determines inflorescence architecture in [69] 施雁飞. 茶树 [70] Coen ES, Meyerowitz EM.The war of the whorls: genetic interactions controlling flower development[J]. Nature, 1991, 353(6339): 31-37. [71] Colombo L, Franken J, Koetje E, et al.The petunia MADS box gene [72] Rounsley SD, Ditta GS, Yanofsky MF.Diverse roles for MADS box genes in [73] Pelaz S, Ditta GS, Baumann E, et al.B and C floral organ identity functions require [74] 丛楠, 程治军, 万建民. 控制花器官发育的ABCDE模型[J]. 中国农学通报, 2007, 23(7): 124-128. [75] 方成刚, 夏丽飞, 陈林波, 等. 茶树 [76] 吴致君, 卢莉, 黎星辉, 等. 茶树 [77] Hao, XY.Identification and expression analysis of dormancy associated MADS-box and flowering locus T genes in tea plant ( [78] 周坤. 茶树MADS-box家族B类基因 [79] 靳春梅, 周坤, 张今今. 茶树花发育MADS-box转录因子CsGLO1、CsGLO2与CsAG之间的互作关系研究[J]. 植物科学学报, 2017, 35(1): 79-86. [80] 程国山. 茶树 [81] 唐红. 茶树MADS-box家族B类基因 [82] 秋梦颖. 茶树 [83] Zhang CC, Tan LQ, Wang LY, et al.Cloning and characterization of an [84] Fang WP.Differentially expression of [85] 陈暄, 汤茶琴, 邹中伟, 等. 茶树花发育相关的一个钙依赖蛋白激酶基因的克隆与表达分析[J]. 茶叶科学, 2009, 29(1): 47-52. [86] 陈聪, 江昌俊, 叶爱华, 等. 茶树 [87] 余梅, 江昌俊, 叶爱华, 等. 茶树花粉特异蛋白基因 [88] 龚莹, 余梅, 江昌俊, 等. 茶树花粉特异蛋白基因 [89] 余梅, 江昌俊, 房婉萍, 等. 茶树花蕾14-3-3蛋白基因的分子克隆及差异表达分析[J]. 中国农业科学, 2008, 41(10): 2983-2991. [90] 叶爱华, 余梅, 朱林, 等. 用cDNA-AFLP及其改进的方法分析茶树花发育过程中的基因表达[J]. 激光生物学报, 2008, 17(6): 733-738. [91] 韩兴杰, 徐玲玲, 廖亮, 等. 茶树 [92] 丁菲, 庞磊, 李叶云, 等. 茶树海藻糖-6-磷酸合成酶基因( [93] 郝心愿, 曹红利, 杨亚军, 等. 茶树生长素响应因子基因 [94] 李梅, 陈林波, 田易萍, 等. 雌蕊缺失茶树花3个发育期的数字基因表达谱分析[J]. 茶叶科学, 2017, 37(1): 97-107. |
[1] | CHEN Qiyu, MA Jianqiang, CHEN Jiedan, CHEN Liang. Genetic Diversity of Mature Leaves of Tea Germplasms Based on Image Features [J]. Journal of Tea Science, 2022, 42(5): 649-660. |
[2] | SUN Yue, WU Jun, WEI Chaoling, LIU Mengyue, GAO Chenxi, ZHANG Lingzhi, CAO Shixian, YU Shuntian, JIN Shan, SUN Weijiang. Screening of Tea Germplasm Resistant to Matsumurasca onukii and Dendrothrips minowai Priesner and Analysis of Resistance-related Factors [J]. Journal of Tea Science, 2022, 42(5): 689-704. |
[3] | WANG Yuyuan, LIU Renjian, LIU Shaoqun, SHU Canwei, SUN Binmei, ZHENG Peng. Expression Analysis and Functional Identification of CsTT2 R2R3-MYB Transcription Factor in Tea Plants [J]. Journal of Tea Science, 2022, 42(4): 463-476. |
[4] | LIU Renjian, WANG Yuyuan, LIU Shaoqun, SHU Canwei, SUN Binmei, ZHENG Peng. Functional Identification of CsbHLH024 and CsbHLH133 Transcription Factors in Tea Plants [J]. Journal of Tea Science, 2022, 42(3): 347-357. |
[5] | YANG Ni, LI Yimin, Li Jingwen, TENG Ruimin, CHEN Yi, WANG Yahui, ZHUANG Jing. Effects of Exogenous 5-ALA on the Chlorophyll Synthesis and Fluorescence Characteristics and Gene Expression of Key Enzymes in Tea Plants under Drought Stress [J]. Journal of Tea Science, 2022, 42(2): 187-199. |
[6] | CHEN Xiaomin, ZHAO Feng, WANG Shuyan, SHAO Shuxian, WU Wenxi, LIN Qin, WANG Pengjie, YE Naixing. Purine Alkaloid Evaluation and Excellent Resources Screening of Fujian Wild Tea [J]. Journal of Tea Science, 2022, 42(1): 18-28. |
[7] | TANG Lei, XIAO Luodan, HUANG Yifan, XIAO Bin, GONG Chunmei. Cloning and Magnesium Transport Function Analysis of CsMGTs Genes in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2021, 41(6): 761-776. |
[8] | WU Wanfu, LYU Shidong, YANG Xuefang, LI Yue, ZHANG Jiguang. Study of Characteristic Indexes and Fatty Acid Composition in Big-leaf Tea Plant (Camellia sinensis var. assamica) Seed Oils from Yunnan Province [J]. Journal of Tea Science, 2021, 41(4): 463-470. |
[9] | LIU Dingding, WANG Junya, TANG Rongjin, CHEN Liang, MA Chunlei. Genome-wide Identification of PPR Gene Family and Expression Analysis of Albino Related Genes in Tea Plants [J]. Journal of Tea Science, 2021, 41(2): 159-172. |
[10] | ZHANG Qunfeng, NI Kang, YI Xiaoyun, LIU Meiya, RUAN Jianyun. Advances of Magnesium Nutrition in Tea Plant [J]. Journal of Tea Science, 2021, 41(1): 19-27. |
[11] | CHEN Yao, ZHANG Weifu, REN Hengze, XIONG Fei, ZHANG Haojie, YAO Lina, LIU ying, WANG Lu, WANG Xinchao, YANG Yajun, HAO Xinyuan. Genome-wide Investigation and Expression Analysis of DNA Demethylase Genes in Tea Plant (Camellia Sinensis) [J]. Journal of Tea Science, 2021, 41(1): 28-39. |
[12] | JIN Ke, HUANG Jian'an, XIONG Ligui, LIU Shuoqian, QIN Xiaohong, PENG Jing, LI Yinhua, LI Juan. Research of Theanine-related Genes Expressed in Etiolated Tea Plant (Camellia Sinensis) [J]. Journal of Tea Science, 2021, 41(1): 40-47. |
[13] | WAN Qiwen, YANG Ni, LI Yimin, HAN Miaohua, LIN Shijia, TENG Ruimin, ZHUANG Jing. Effects of Exogenous 24-Epibrassinolide on Photosynthetic Characteristics of Tea Plants [J]. Journal of Tea Science, 2021, 41(1): 58-70. |
[14] | HUANG Fangfang, LI Qin, HUANG Jian'an. Research Progress of Tea Rhizosphere Microorganisms [J]. Journal of Tea Science, 2020, 40(6): 715-723. |
[15] | FENG Xia, DI Taimei, PENG Jing, LI Nana, YAO Lina, YANG Yajun, WANG Xinchao, WANG Lu. Interaction Identification and Expression Analysis of CsCIPK12 and CsKIN10 in Tea Plant [J]. Journal of Tea Science, 2020, 40(6): 739-750. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|