Journal of Tea Science ›› 2019, Vol. 39 ›› Issue (4): 392-402.doi: 10.13305/j.cnki.jts.2019.04.004
Previous Articles Next Articles
GUO Yongchun, WANG Pengjie, CHEN Di, ZHENG Yucheng, CHEN Xuejin, YE Naixing*
Received:
2019-02-11
Online:
2019-08-15
Published:
2019-08-19
CLC Number:
GUO Yongchun, WANG Pengjie, CHEN Di, ZHENG Yucheng, CHEN Xuejin, YE Naixing. Genome-wide Identification and Expression Analysis of SRO Gene Family in Camellia sinensis[J]. Journal of Tea Science, 2019, 39(4): 392-402.
[1] | 岳川, 曹红利, 郝心愿, 等. 茶树CsASR基因的克隆及其表达分析[J]. 茶叶科学, 2017, 37(4): 399-410. |
[2] | Liu S, Liu S, Wang M, et al.A wheat SIMILAR TO RCD-ONE gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity[J]. The Plant Cell, 2014, 26(1): 164-180. |
[3] | You J, Zong W, Du H, et al.A special member of the rice SRO family, OsSRO1c, mediates responses to multiple abiotic stresses through interaction with various transcription factors[J]. Plant Molecular Biology, 2014, 84(6): 693-705. |
[4] | 吕有军, 杨卫军, 赵兰杰, 等. 陆地棉SRO基因家族的鉴定及表达分析[J]. 作物学报, 2017, 43(10): 1468-1479. |
[5] | 赵秋芳, 马海洋, 贾利强, 等. 玉米SRO基因家族的鉴定及表达分析[J]. 中国农业科学, 2018, 51(15): 196-206. |
[6] | Jaspers P, Overmyer K, Wrzaczek M, et al.The RST and PARP-like domain containing SRO protein family: analysis of protein structure, function and conservation in land plants[J]. BMC Genomics, 2010, 11: 170. DOI: 10.1186/1471-2164-11-170. |
[7] | Katiyar-Agarwal S, Zhu J, Kim K, et al.The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2007, 103(49): 18816-18821. |
[8] | Ahlfors R, Overmyer K, Jaspers P, et al.Arabidopsis radical-induced cell death 1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene and methyl jasmonate responses[J]. Plant Cell, 2004, 16(7): 1925-1937. |
[9] | Vainonen J P, Jaspers P, Wrzaczek M, et al.RCD1-DREB2A interaction in leaf senescence and stress responses in Arabidopsis thaliana[J]. Biochemical Journal, 2012, 442(3): 573-581. |
[10] | Teotia S, Lamb RS.The paralogous genes RADICAL-INDUCED CELL DEATH and SIMILAR TO RCD ONE1 have partially redundant functions during Arabidopsis development[J]. Plant Physiology, 2009, 151(1): 180-198. |
[11] | Jaspers P, Blomster T, Brosche M, et al.Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors[J]. The Plant Journal, 2009, 60(2): 268-279. |
[12] | Zhao X, Gao L, Jin P, et al.The similar to RCD-one 1 protein SRO1 interacts with GPX3 and functions in plant tolerance of mercury stress[J]. Bioscience Biotechnology and Biochemistry, 2017, 82(1): 1-7. |
[13] | Babajani G, Effendy J, Plant AL.Sl-SROl1 increases salt tolerance and is a member of the radical-induced cell death 1—similar to RCD1 gene family of tomato[J]. Plant Science, 2009, 176(2): 214-222. |
[14] | 李保珠, 赵翔, 赵孝亮, 等. 拟南芥SRO蛋白家族的结构及功能分析[J]. 遗传, 2013, 35(10): 1189-1197. |
[15] | Li H, Li R, Qu F, et al.Identification of the SRO gene family in apples (Malus×domestica) with a functional characterization of MdRCD1[J]. Tree Genetics & Genomes, 2017, 13(5): 94. DOI: 10.1007/s11295-018-1242-4. |
[16] | You J, Zong W, Li X, et al.The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice[J]. Journal of Experimental Botany, 2013, 64(2): 569-583. |
[17] | Wang W, Xin H, Wang M, et al.Transcriptomic analysis reveals the molecular mechanisms of drought-stress-induced decreases in Camellia sinensis leaf quality[J]. Frontiers in Plant Science, 2016, 7: 385. DOI: 10.3389/fpls.2016.00385. |
[18] | Zhou Y, Liu Y, Wang S, et al.Molecular cloning and characterization of galactinol synthases in Camellia sinensis with different responses to biotic and abiotic stressors[J]. Journal of Agricultural and Food Chemistry, 2017, 65(13): 2751-2759. |
[19] | Hou Y, Wu A, He Y, et al.Genome-wide characterization of the basic leucine zipper transcription factors in Camellia sinensis[J]. Tree Genetics & Genomes, 2018, 14(2): 27. DOI: 10.1007/s11295-018-1242-4. |
[20] | Liu L, Li Y, She G, et al.Metabolite profiling and transcriptomic analyses reveal an essential role of UVR8-mediated signal transduction pathway in regulating flavonoid biosynthesis in tea plants (Camellia sinensis) in response to shading[J]. BMC Plant Biology, 2018, 18(1): 233. DOI: 10.1186/s12870-018-1440-0. |
[21] | Zhang Q, Cai M, Yu X, et al.Transcriptome dynamics of Camellia sinensis in response to continuous salinity and drought stress[J]. Tree Genetics & Genomes, 2017, 13(4): 1-17. |
[22] | Wei C, Yang H, Wang S, et al.Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proceedings of the National Academy of Sciences, 2018, 115(18): 4151-4158. |
[23] | Xia EH, Zhang HB, Sheng J, et al.The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Mol Plant, 2017, 10(6): 866-877. |
[24] | Bailey TL, Boden M, Buske FA, et al.MEME SUITE: tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37: 202-208. |
[25] | Hu B, Jin J, Guo A, et al.GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297. |
[26] | Hall B G.Building phylogenetic trees from molecular data with MEGA[J]. Molecular Biology and Evolution, 2013, 30(5): 1229-1235. |
[27] | Lescot M.PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30(1): 325-327. |
[28] | Trapnell C, Roberts A, Goff L, et al.Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nature Protocols, 2012, 7(3): 562-578. |
[29] | Anders S, Pyl P T, Huber W.HTSeq—a Python framework to work with high-throughput sequencing data[J]. Bioinformatics, 2015, 31(2): 166-169. |
[30] | Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4): 402-408. |
[31] | 魏瑞敏, 郑井元, 刘峰, 等. 辣椒bZIP家族基因的鉴定与表达分析[J]. 园艺学报, 2018, 45(8): 1535-1550. |
[32] | Wang YX, Liu ZW, Wu ZJ, et al.Genome-wide identification and expression analysis of GRAS family transcription factors in tea plant (Camellia sinensis)[J]. Scientific Reports, 2018, 8(1): 3949. DOI: 10.1038/s41598-018-22275-z. |
[33] | Xu G, Guo C, Shan H, et al.Divergence of duplicate genes in exon-intron structure[J]. Proceedings of the National Academy of Sciences, 2012, 109(4): 1187-1192. |
[34] | 岳川, 曹红利, 王赞, 等. 茶树水通道蛋白基因的克隆与表达分析[J]. 西北植物学报, 2018, 38(8): 1419-1427. |
[1] | WANG Liubin, HUANG Liyun, TENG Cuiqin, WU Liyun, CHENG Hao, YU Cuiping, WANG Liyuan. Genetic and Phylogenetic Analysis for Germplasm Resources of Camellia sinensis from Wuzhou City [J]. Journal of Tea Science, 2022, 42(5): 601-609. |
[2] | ZHOU Hanchen, YANG Jihong, XU Yujie, WU Qiong, LEI Pandeng. Phylogenetic Analysis of NUDX1 Gene Involved in Geraniol Biosynthesis [J]. Journal of Tea Science, 2022, 42(5): 638-648. |
[3] | XING Anqi, WU Zichen, XU Xiaohan, SUN Yi, WANG Genmei, WANG Yuhua. Research Advances of Fluoride Accumulation Mechanisms in Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 301-315. |
[4] | WANG Tao, WANG Yiqing, QI Siyu, ZHOU Zhe, CHEN Zhidan, SUN Weijiang. Identification and Transcriptional Regulation of CLH Gene Family and Expression Analysis in Albino Tea Plants (Camellia sinensis) [J]. Journal of Tea Science, 2022, 42(3): 331-346. |
[5] | LIU Fuhao, FAN Yangen, WANG Yu, MENG Fanyue, ZHANG Lixia. Screening and Identification of Chaperone CsHIPP26.1 Chelating Ions in Tea Cultivar ‘Huangjinya’ [J]. Journal of Tea Science, 2022, 42(2): 179-186. |
[6] | WANG Pengjie, YANG Jiangfan, ZHANG Xingtan, YE Naixing. Research Advance of Tea Plant Genome and Sequencing Technologies [J]. Journal of Tea Science, 2021, 41(6): 743-752. |
[7] | ZHOU Hanchen, LEI Pandeng. The Functional Identification of Two Alternative Splicing Transcripts of CsNES [J]. Journal of Tea Science, 2021, 41(6): 753-760. |
[8] | YAN Minghui, LIU Ke, WANG Man, LYU Ying, ZHANG Qian. Complete Chloroplast Genome of Camellia sinensis cv. Xinyang 10 and Its Phylogenetic Evolution [J]. Journal of Tea Science, 2021, 41(6): 777-788. |
[9] | LIN Xinying, WANG Pengjie, CHEN Xuejin, GUO Yongchun, GU Mengya, ZHENG Yucheng, YE Naixing. Identification of LOX Gene Family in Camellia sinensis and Expression Analysis in the Process of White Tea Withering [J]. Journal of Tea Science, 2021, 41(4): 482-496. |
[10] | WANG Yanding, WANG Huan, LI Nana, WANG Lu, HAO Xinyuan, WANG Yuchun, DING Changqing, YANG Yajun, WANG Xinchao, QIAN Wenjun. Identification and Expression Analysis of Glucose-6-hosphate Dehydrogenase Gene (CsG6PDHs) in Camellia sinensis [J]. Journal of Tea Science, 2021, 41(4): 497-510. |
[11] | CHEN Siwen, KANG Rui, GUO Zhiyuan, ZHOU Qiongqiong, FENG Jiancan. Cloning and Expression Analysis of CsCML16 in Tea Plants (Camellia sinensis) under Low Temperature Stress [J]. Journal of Tea Science, 2021, 41(3): 315-326. |
[12] | ZHAO Yiqing, LIU Zhengjun, ZHANG Tianxin, ZHAO Yanting, XIAO Bin, GAO Yuefang. Cloning of CsCHLI Gene and Its Expression Analysis in Different Albino Tea Cultivars (Camellia sinensis) [J]. Journal of Tea Science, 2021, 41(3): 327-336. |
[13] | GUO Lingling, ZHANG Fen, CHENG Hao, WEI Kang, RUAN Li, WU Liyun, WANG Liyuan. Molecular Cloning and Expression Analysis of CsAAPs Gene Subfamily in Camellia Sinensis [J]. Journal of Tea Science, 2020, 40(4): 454-464. |
[14] | WANG Minghan, DING Ding, ZHANG Chenyu, GAO Xizhi, CHEN Jianjiao, TANG Han, SHEN Chengwen. Effects of Drought Stress on Growth and Chlorophyll Fluorescence Characteristics of Tea Seedlings [J]. Journal of Tea Science, 2020, 40(4): 478-491. |
[15] | GUO Yongchun, CHEN Jinfa, ZHAO Feng, WANG Shuyan, WANG Pengjie, ZHOU Peng, OUYANG Liqun, JIN Shan, YE Naixing. Study on the Distribution of Glyphosate and Its Metabolite Aminomethylphosphonic Acid in Camellia Sinensis [J]. Journal of Tea Science, 2020, 40(4): 510-518. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|