Journal of Tea Science ›› 2019, Vol. 39 ›› Issue (4): 447-454.doi: 10.13305/j.cnki.jts.2019.04.010
Previous Articles Next Articles
CHENG Dongmei1, ZHANG Li1, WEI Hongfei2, JIANG Xinfeng3, ZHOU Saixia1, ZHANG Zhiyong1, PENG Yansong1,*
Received:
2018-10-24
Online:
2019-08-15
Published:
2019-08-19
CLC Number:
CHENG Dongmei, ZHANG Li, WEI Hongfei, JIANG Xinfeng, ZHOU Saixia, ZHANG Zhiyong, PENG Yansong. Different Photosynthetic Responses of Camellia sinensis to Lushan Altitude Gradient[J]. Journal of Tea Science, 2019, 39(4): 447-454.
[1] | 张宏达, 任善湘. 中国植物志第49卷第3册[M]. 北京: 科学出版社, 1998: 130. |
[2] | Wang H, Prentice I C, Davis T W, et al.Photosynthetic responses to altitude: an explanation based on optimality principles[J]. New Phytologist, 2017, 213(3): 976-982. |
[3] | 罗旭. 不同高海拔对金冠苹果光合特性和果实品质的影响[D]. 雅安: 四川农业大学, 2013: 5-6. |
[4] | 马力, 黄纪刚, 吴昊. 庐山云雾茶气候品质分析[J]. 中国高新区, 2017(23): 229-230. |
[5] | Rabinowitch E.Photosynthesis[J]. Annual Review of Physical Chemistry, 1951, 2(1): 361-382. |
[6] | Galston A W.Photosynthesis as a basis for life support on earth and in space[J]. Bioscience, 1992, 42(7): 490-494. |
[7] | 宛晓春, 夏涛. 茶树次生代谢[M]. 北京: 科学出版社, 2015: 51-100. |
[8] | Umena Y, Kawakami K, Shen J R, et al.Crystal structure of oxygen-evolving photosystem Ⅱ at a resolution of 1.9 A?[J]. Nature, 2011, 473(7345): 55-60. |
[9] | Ja?rvi S, Suorsa M, Aro E M. Photosystem Ⅱ repair in plant chloroplasts-regulation, assisting proteins and shared components with photosystem Ⅱ biogenesis[J]. BBA-Bioenergetics, 2015, 1847(9): 900-909. |
[10] | Lu Y.Identification and roles of photosystem Ⅱ assembly, stability, and repair factors in Arabidopsis[J]. Frontiers in Plant Science, 2016, 7: 168. DOI: 10.3389/fpls.2016.00168. |
[11] | Aro E M, Virgin I, Andersson B.Photoinhibition of photosystem Ⅱ: inactivation, protein damage and turnover[J]. BBA-Bioenergetics, 1993, 1143(2): 113-134. |
[12] | 张子山. 低温弱光胁迫下黄瓜叶片光系统Ⅰ与光系统Ⅱ的相互作用[D]. 泰安: 山东农业大学, 2013: 15-17. |
[13] | Huang W, Zhang S B, Cao K F.The different effects of chilling stress under moderate light intensity on photosystem Ⅱ compared with photosystem I and subsequent recovery in tropical tree species[J]. Photosynthesis Research, 2010, 103(3): 175-182. |
[14] | Takahashi S, Murata N.How do environmental stresses accelerate photoinhibition?[J] Trends in Plant Science, 2008, 13(4): 178-182. |
[15] | 程冬梅, 张志勇, 周赛霞, 等. 三种常绿阔叶树光系统Ⅱ在低温胁迫下的光抑制及恢复[J]. 广西植物, 2018, DOI: 10.11931/guihaia.gxzw201808011. |
[16] | 吴道良. 红河州不同海拔高度茶树主要品质成分与生理学特性的变化[D]. 武汉: 华中农业大学, 2008. |
[17] | 施嘉璠, 谢序宾, 唐茜, 等. 茶叶光合作用强度的因素再探[J]. 四川农业大学学报, 1988, 1: 9-14. |
[18] | Ye Z P.A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa[J]. Photosynthetica, 2007, 45(4): 637-640. |
[19] | Platt T, Gallegos C L, Harrison W G.Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton[J]. Journal of Marine Research, 1980, 38(4): 687-701. |
[20] | Togashi H F, Prentice I C, Atkin O K, et al.Thermal acclimation of leaf photosynthetic traits in an evergreen woodland, consistent with the coordination hypothesis[J]. Biogeosciences, 2018, 15(11): 3461-3474. |
[21] | 李存信, 林德辉. 不同海拔地区种植的水稻叶片光合作用特征的比较[J]. 云南植物研究, 1986, 8(4) :459-466. |
[22] | 韦玉, 李熙萌, 桑卫国, 等. 不同海拔高度矮嵩草的光合响应差异[J]. 生态科学, 2014, 33(6): 1160-1164. |
[23] | Woodward F.The differential temperature responses of the growth of certain plant species from different altitudes. Ⅱ. Analyses of the control and morphology of leaf extension and specific leaf area of Phleum bertolonii D. C. and P. alpinum L[J]. New Phytologist, 1979, 82(2): 397-405. |
[24] | Hovenden M J, Vander Schoor J K. The response of leaf morphology to irradiance depends on altitude of origin in Nothofagus cunninghamii[J]. New Phytologist, 2006, 169(2): 291-297. |
[25] | 张兰, 魏吉鹏, 沈晨, 等. 秋茶光合作用与品质成分变化的分析[J]. 茶叶科学, 2018, 38(3): 271-280. |
[26] | 李鑫, 张丽平, 张兰, 等. 茶园高温干旱灾害防控技术[J]. 中国茶叶, 2018(7): 38-41. |
[27] | 孙君, 朱留刚, 林志坤, 等. 茶树光合作用研究进展[J]. 福建农业学报, 2015, 30(12): 1231-1237. |
[28] | 陶汉之. 茶树光合生理的研究[J]. 茶叶科学, 1991, 11(2): 169-170. |
[29] | 陈晓晨, 徐影, 姚遥. 不同升温阈值下中国地区极端气候事件变化预估[J]. 大气科学, 2015, 39(6): 1123-1135. |
[30] | Reich P B, Sendall K M, Stefanski A, et al.Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture[J]. Nature, 2018, 562(7726): 263-267. |
[31] | Pepin N, Lundquist J.Temperature trends at high elevations: patterns across the globe[J]. Geophysical Research Letters, 2008, 35(14): L14701. DOI: 10.1029/2008GL034026. |
[32] | Rangwala I, Miller J R.Climate change in mountains: a review of elevation-dependent warming and its possible causes[J]. Climatic Change, 2012, 114(3/4): 527-547. |
[1] | YANG Ni, LI Yimin, Li Jingwen, TENG Ruimin, CHEN Yi, WANG Yahui, ZHUANG Jing. Effects of Exogenous 5-ALA on the Chlorophyll Synthesis and Fluorescence Characteristics and Gene Expression of Key Enzymes in Tea Plants under Drought Stress [J]. Journal of Tea Science, 2022, 42(2): 187-199. |
[2] | XIE Wengang, CHEN Wei, TAN Liqiang, YAN Linfeng, TANG Qian. Analysis of Bud and Leaf Characters and Photosynthetic Characteristics of Three Tea Cultivars in Sichuan [J]. Journal of Tea Science, 2021, 41(6): 813-822. |
[3] | WANG Minghan, DING Ding, ZHANG Chenyu, GAO Xizhi, CHEN Jianjiao, TANG Han, SHEN Chengwen. Effects of Drought Stress on Growth and Chlorophyll Fluorescence Characteristics of Tea Seedlings [J]. Journal of Tea Science, 2020, 40(4): 478-491. |
[4] | ZHONG Qiusheng, LIN Zhenghe, HAO Zhilong, CHEN Changsong, CHEN Zhihui, YOU Xiaomei, SHAN Ruiyang. Effect of Fluoride and Aluminum Interaction on the Chlorophyll Fluorescence Characteristics of Tea Leaves [J]. Journal of Tea Science, 2019, 39(5): 537-546. |
[5] | LUO Hongyu, TANG Min, ZHAI Xiuming, YANG Juan, LIU Xiang, GU Yu, YUAN Linying, ZHONG Yingfu, HUANG Shangjun. Effect of Different Withering Light-wave Bands on Chlorophyll Fluorescence Parameter and Biochemical Quality of Black Tea [J]. Journal of Tea Science, 2019, 39(2): 131-138. |
[6] | WEI Jipeng, LI Xin, WANG Zhaoyang, LI Yang, ZHANG Lan, SHEN Chen, YAN Peng, ZHANG Liping, HAN Wenyan. Effects of Exogenous Salicylic Acid on Photosynthesis and Antioxidant Enzymes of Tea Plants under High Temperature [J]. Journal of Tea Science, 2018, 38(4): 353-362. |
[7] | ZHANG Lan, WEI Jipeng, SHEN Chen, YAN Peng, ZHANG Liping, LI Xin, HAN Wenyan. Analysis of the Photosynthesis and Quality Components Changes in Autumn Tea [J]. Journal of Tea Science, 2018, 38(3): 271-280. |
[8] | LIN Zhenghe, ZHONG Qiusheng, HAO Zhilong, YOU Xiaomei, CHEN Zhihui, CHEN Changsong, SHAN Ruiyang, RUAN Qichun. Effects of Chlorophyll Fluorescence Parameters of Different Tea Cultivars in Response to Low Nitrogen [J]. Journal of Tea Science, 2017, 37(4): 363-372. |
[9] | MO Ling, YAO Yuefeng, BAI Kundong, GU Daxing, ZENG Danjuan, HUANG Yuqing. A Preliminary Study on Photosynthetic Characteristics for New Tea Cultivar Guilyu-I [J]. Journal of Tea Science, 2015, 35(5): 443-448. |
[10] | YU Hai-yun, SHI Yuan-zhi, MA Li-feng, YI Xiao-yun, RUAN Jian-yun. Leaf Photosynthetic Traits at Different Canopies of Tea Plants [J]. Journal of Tea Science, 2013, 33(6): 505-511. |
[11] | LIN Zheng-he, ZHONG Qiu-sheng, CHEN Chang-song, CHEN Zhi-hui, YOU Xiao-mei. Effects of Different Potassium Level on Leaf Photosynthesis of Tea Seedling [J]. Journal of Tea Science, 2013, 33(3): 261-267. |
[12] | WEI Kang, WANG Li-yuan, CHENG Hao, GONG Wu-yun, WU Li-bin. Effect of Temperature and Humidity on the Gene Expression in Buds of Tea Cuttings [J]. Journal of Tea Science, 2013, 33(2): 109-115. |
[13] | PANG Lei, ZHOU Xiao-sheng, LI Ye-yun, JIANG Chang-jun. Study and Identification of Cold Resistance of Camellia Sinensis by Chlorophyll Fluorescence Method [J]. Journal of Tea Science, 2011, 31(6): 521-524. |
[14] | CHENG Hao, ZHOU Jian, LUAN Zheng, CHANG Jie, GE Ying, ZENG Jian-ming, ZHANG Xiao-fei, WANG Li-yuan. The Effect of Elevated CO2 on Photosynthetic Rate and Growth of Tea(Camellia sinensis) Seedling in Greenhouse [J]. Journal of Tea Science, 2007, 27(3): 226-230. |
[15] | GU Bao-jing, CHANG Jie, ZENG Jian-ming, WANG Li-yuan, YUAN Hai-bo, GE Ying, LIAO Jian-xiong, ZHOU Jian, CHENG Hao. Studies on the Optimal Irradiation for Tea Seedlings Under Greenhouse Manufacturing Administration [J]. Journal of Tea Science, 2006, 26(1): 24-30. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|