[1] Bustin S A.Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems[J]. Journal of Molecular Endocrinology, 2002, 29(1): 23-39. [2] Bustin S A.Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays[J]. Journal of Molecular Endocrinology, 2000, 25(2): 169-193. [3] Radonić A, Thulke S, Mackay I M, et al.Guideline to reference gene selection for quantitative real-time PCR[J]. Biochemical and Biophysical Research Communications, 2004, 313(4): 856-862. [4] Gutierrez L, Mauriat M, Guenin S, et al.The lack of a systematic validation of reference genes: A serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants[J]. Plant Biotechnology Journal, 2008, 6(6): 609-618. [5] Brunner A M, Yakovlev I A, Strauss S H.Validating internal controls for quantitative plant gene expression studies[J]. BMC Plant Biol, 2004, 4:14. [6] Gutierrez L, Mauriat M, Pelloux J, et al.Towards a systematic validation of references in real-time RT-PCR[J]. Plant Cell, 2008, 20(7): 1734-1735. [7] Thellin O, Zorzi W, Lakaye B, et al.Housekeeping genes as internal standards: Use and limits[J]. Journal of Biotechnology, 1999, 75(2/3): 291-295. [8] Warzybok A, Migocka M.Reliable reference genes for normalization of gene expression in cucumber grown under different nitrogen nutrition[J]. PLoS One, 2013, 8(9): e72887. [9] Manoli A, Sturaro A, Trevisan S, et al.Evaluation of candidate reference genes for qPCR in maize[J]. Journal of Plant Physiology, 2012, 169(8): 807-815. [10] Lovdal T, Lillo C.Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress[J]. Analytical biochemistry, 2009, 387(2): 238-242. [11] De Carvalho K, Bespalhok Filho J C, Dos Santos T B, et al. Nitrogen starvation, salt and heat stress in coffee (Coffea arabica L.): Identification and validation of new genes for qPCR normalization[J]. Molecular Biotechnology, 2013, 53(3): 315-325. [12] Xiao X L, Ma J B, Wang J R, et al.Validation of suitable reference genes for gene expression analysis in the halophyte Salicornia europaea by real-time quantitative PCR[J]. Frontiers in Plant Science, 2015, 5: 788. [13] 孙美莲, 王云生, 杨冬青, 等. 茶树实时荧光定量PCR分析中内参基因的选择[J]. 植物学报, 2010, 45: 579-587. [14] Gohain B, Bandyopadhyay T, Borchetia S, et al.Identification and validation of stable reference genes in Camellia Species[J]. Journal of Biotechnology and Pharmaceutical Research, 2011, 2(1): 9-18. [15] Gohain B, Bandyopadhyay T, Bhorali P, et al.Rubisco-bis-phosphate oxygenase (RuBP)-a potential housekeeping gene for qPCR assays in tea[J]. African Journal of Biotechnology, 2012, 11(51): 11193-11199. [16] 郝姗. 茶树不同逆境条件下qRT-PCR适宜内参基因的筛选[D]. 南京: 南京农业大学, 2012: 47-55. [17] Hao X, Horvath D, Chao W, et al.Identification and evaluation of reliable reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis (L.) O. Kuntze)[J]. International Journal of Molecular Sciences, 2014, 15(12): 22155-22172. [18] Okano K, Chutani K, Matsuo K.Suitable level of nitrogen fertilizer for tea (Camellia sinensis L.) plants in relation to growth, photosynthesis, nitrogen uptake and accumulation of free amino acids[J]. Japanese Journal of Crop Science, 1997, 66(2): 279-287. [19] Urbanczyk-Wochniak E, Fernie A R.Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants[J]. Journal of Experimental Botany, 2005, 56(410): 309-321. [20] 魏毅东, 陈玉, 郭海萍, 等. 水稻缺素胁迫下实时荧光定量RT-PCR的内参基因的选择[J]. 农业生物技术学报, 2013, 21: 1302-1312. [21] Ruan J Y, Gerendas J, Hardter R, et al.Effect of nitrogen form and root-zone ph on growth and nitrogen uptake of tea (Camellia sinensis) plants[J]. Annals of Botany, 2007, 99(2): 301-310. [22] Ruan J, Gerendás J, Härdter R, et al.Effect of root zone pH and form and concentration of nitrogen on accumulation of quality-related components in green tea[J]. Journal of the Science of Food and Agriculture, 2007, 87(8): 1505-1516. [23] 蒋晓梅, 张新全, 严海东, 等. 柳枝稷根组织实时定量PCR分析中内参基因的选择[J]. 农业生物技术学报, 2014, 22: 55-63. [24] Silver N, Best S, Jiang J, et al.Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR[J]. BMC Molecular Biology, 2006, 7(1): 33. [25] Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes [J]. Genome Biology, 2002, 3(7): research0034.1-0034.11. [26] Andersen C L, Jensen J L, Orntoft T F.Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Research, 2004, 64(15): 5245-5250. [27] 汪进, 添先凤, 江昌俊, 等. 茶树硝酸盐转运蛋白基因的克隆和表达分析[J]. 植物生理学报, 2014, 50: 983-988. [28] Wang YY, Hsu PK, Tsay YF.Uptake, allocation and signaling of nitrate[J]. Trends in Plant Science, 2012, 17: 458-467. [29] Wu X, Yang H, Qu C, et al. Sequence and expression analysis of the AMT gene family in poplar[J]. Frontiers in Plant Science, 2015, 6: 337. [30] Faccioli P, Ciceri G P, Provero P, et al.A combined strategy of ′in silico′ transcriptome analysis and web search engine optimization allows an agile identification of reference genes suitable for normalization in gene expression studies[J]. Plant Mol Biol, 2007, 63(5): 679-688. [31] Olvera J, Wool I G.The primary structure of rat ribosomal protein L13[J]. Biochemical and Biophysical Research Communications, 1994, 201(1): 102-107. [32] Martinez-Guitarte J L, Planello R, Morcillo G. Characterization and expression during development and under environmental stress of the genes encoding ribosomal proteins L11 and L13 in Chironomus riparius[J]. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 2007, 147(4): 590-596. [33] Jain M, Tyagi S B, Thakur J K, et al.Molecular characterization of a light-responsive gene, breast basic conserved protein 1 (OsiBBC1), encoding nuclear-localized protein homologous to ribosomal protein L13 from Oryza sativa indica[J]. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 2004, 1676(2): 182-192. [34] Ye X, Zhang F M, Tao Y H, et al.Reference gene selection for quantitative real-time PCR normalization in different cherry genotypes, developmental stages and organs[J]. Scientia Horticulturae, 2015, 181: 182-188. [35] Wang X C, Zhao Q Y, Ma C L, et al.Global transcriptome profiles of Camellia sinensis during cold acclimation[J]. BMC Genomics, 2013, 14(1): 415. [36] Wei K, Wang L Y, Wu L Y, et al.Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.)[J]. PLoS One, 2014, 9(9): e107201. [37] Lim F-H, Fakhrana I N, Rasid O A, et al.Isolation and selection of reference genes for Ganoderma boninense gene expression study using quantitative Real-time PCR (qPCR)[J]. Journal of Oil Palm Research, 2014, 26(2): 170-181. [38] An Y Q, Mcdowell J M, Huang S R, et al.Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues[J]. Plant Journal, 1996, 10(1): 107-121. [39] 周晓惠, 刘军, 庄勇. 喀西茄内参基因实时荧光定量PCR表达稳定性评价[J]. 园艺学报, 2014, 41: 1731-1738. [40] Czechowski T, Stitt M, Altmann T, et al.Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis[J]. Plant Physiol, 2005, 139(1): 5-17. [41] Jain M.Genome-wide identification of novel internal control genes for normalization of gene expression during various stages of development in rice[J]. Plant Science, 2009, 176(5): 702-706. [42] 周兰, 张利义, 张彩霞, 等. 苹果实时荧光定量PCR分析中内参基因的筛选[J]. 果树学报, 2012, 29(6): 965-970. |