[1] Shi CY, Yang H, Wei CL, et al.Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds[J]. BMC Genomics, 2011, 12(1): 1-19. [2] Liu SC, Jin JQ, Ma JQ, et al.Transcriptomic analysis of tea plant responding to drought stress and recovery [J]. PLoS ONE, 2016, 11(1): e0147306. Transcriptomic analysis of tea plant responding to drought stress and recovery [J]. PLoS ONE, 2016, 11(1): e0147306. http://dx.doi.org/10.1371/ journal. pone.0147306. [3] Wei Y, Jing W, Youxiang Z, et al.Genome-wide identification of genes probably relevant to the uniqueness of tea plant (Camellia sinensis) and its cultivars[J]. International Journal of Genomics, 2015, 2015: 527054. doi: 10.1155/2015/527054. [4] Wang XC, Zhao QY, Ma CL, et al.Global transcriptome profiles of Camellia sinensis during cold acclimation[J]. BMC Genomics 2013, 14: 415. DOI: 10.1186/1471-2164-14-415. [5] Mukhopadhyay M, Mondal TK, Chand PK.Biotechnological advances in tea (Camellia sinensis [L.] O. Kuntze): a review[J]. Plant Cell Reports, 2015, 35(2): 255-287. [6] Fauser F, Roth N, Pacher M, et al.In planta gene targeting[J]. Proc Natl Acad Sci USA, 2012, 109(19): 7535-7540. [7] Li T, Liu B, Spalding MH, et al.High-efficiency TALEN-based gene editing produces disease-resistant rice[J]. Nat Biotech, 2012, 30(5): 390-392. [8] Belhaj K, Chaparro-Garcia A, Kamoun S, et al.Editing plant genomes with CRISPR/Cas9[J]. Current Opinion in Biotechnology, 2015, 32: 76-84. [9] Mali P, Yang LH, Esvelt KM, et al.RNA-Guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823-826. [10] Xie K, Yang Y.RNA-guided genome editing in plants using a CRISPR-Cas system[J]. Mol Plant, 2013, 6(6): 1975-1983. [11] Schaeffer SM, Nakata PA.CRISPR/Cas9-mediated genome editing and gene replacement in plants: transitioning from lab to field[J]. Plant Sci, 2015, 240: 130-142. [12] Wiedenheft B, Sternberg SH, Doudna JA.RNA-guided genetic silencing systems in bacteria and archaea[J]. Nature, 2012, 482(7385): 331-338. [13] Jinek M, Chylinski K, Fonfara I, et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. [14] Wang HY, Yang H, Shivalila CS, et al.One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J]. Cell, 2013, 153(4): 910-918. [15] Schiml S, Puchta H.Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas[J]. Plant Methods, 2016, 12(1): 1-9. [16] Lintner NG, Frankel KA, Tsutakawa SE, et al.The structure of the crispr-associated protein csa3 provides insight into the regulation of the CRISPR/Cas system[J]. Journal of Molecular Biology, 2011, 405(4): 939-955. [17] Gilbert LA, Larson MH, Morsut L, et al.CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2): 442-451. [18] Nekrasov V, Staskawicz B, Weigel D, et al.Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease[J]. Nat Biotech, 2013, 31(8): 691-693. [19] Jiang WZ, Zhou HB, Bi HH, et al.Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice[J]. Nucleic Acids Res, 2013, 41(20): e188. [20] Wang Z, Xing H, Dong L, et al.Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation[J]. Genome Biol, 2015, 16: 144. [21] Upadhyay SJ, Alok A, Tuli R.RNA-guided genome editing for target gene mutations in wheat[J]. G3 (Bethesda). 2013, 3(12): 2233-2238. DOI: 10.1534/g3.113.008847. [22] Liang Z, Zhang K, Chen KL, et al.Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system[J]. J Genetics Genomics, 2014, 41(2): 63-68. [23] Zhang H, Zhang J, Wei P, et al.The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation[J]. Plant Biotechnol J, 2014, 12(6): 797-807. [24] Čermák T, Baltes NJ, Čegan R, et al.High-frequency, precise modification of the tomato genome[J]. Genome Biol, 2015, 16: 232. DOI: 10.1186/s13059-015-0796-9. [25] Jia H, Wang N.Targeted genome editing of sweet orange using Cas9/sgRNA[J]. PLoS ONE, 2014, 9(4): e93806. DOI: 10.1371/journal.pone.0093806. [26] Fan D, Liu T, Li C, et al.Efficient CRISPR/Cas9-mediated targeted mutagenesis in populus in the first generation[J]. Scientific Reports, 2015, 5: 12217. [27] Zhang B, Yang X, Yang C, et al.Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in petunia[J]. Scientific Reports, 2016, 6: 20315. [28] Ma X, Zhang Q, Zhu Q, et al.A Robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Mol Plant, 2015, 8(8): 1274-1284. [29] Marillonnet S, Werner S.Assembly of multigene constructs using golden gate cloning[J]. Methods Mol Biol, 2015, 1321: 269-284. |