[1] |
Kachroo A, Robin GP.Systemic signaling during plant defense[J]. Curr Opin Plant Biol, 2013, 16(4): 527-533.
|
[2] |
Schweiger R, Heise AM, Persicke M, et al.Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types[J]. Plant Cell Environ, 2014, 37(7): 1574-1585.
|
[3] |
Dicke M, Baldwin IT.The evolutionary context for herbivore induced plant volatiles: beyond the cry for help[J]. Trends Plant Sci, 2010, 15(3): 167-175.
|
[4] |
Wu JQ, Baldwin IT.New insights into plant responses to the attack frominsect herbivores[J]. Annu Rev Genet, 2010, 44: 1-24.
|
[5] |
Engelberth J, Contreras CF, Dalvi C, et al.Early transcriptome analyses of Z-3-Hexenol-treated Zea mays revealed distinct transcriptional networks and anti-herbivore defense potential of green leaf volatiles[J]. PLoS ONE, 2013, 8(10): e77465.
|
[6] |
Scala A, Allmann S, Mirabella R, et al.Green leaf volatiles: a plant’s multifunctional weapon against herbivores and pathogens[J]. Int J Mol Sci, 2013, 14(9): 17781-17811.
|
[7] |
Baldwin IT, Schultz JC.Rapid changes in tree leaf chemistry induced by damage: Evidence for communication between plants[J]. Science, 1983, 221(4607): 277-279.
|
[8] |
Kessler A, Baldwin IT.Plant responses to insect herbivory: the emerging molecular analysis[J]. Annual Rev Plant Biol, 2002, 53: 299-328.
|
[9] |
Arimura GI, Ozawa R, Nishioka T, et al.Herbivore-induced volatiles induced the emission of ethylene in neighboring lima bean plants[J]. Plant J, 2002, 29(1): 87-98.
|
[10] |
Tscharntke T, Thiessen S, Dolch R, et al.Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa[J]. Biochem Syst Ecol, 2001, 29(10): 1025-1047.
|
[11] |
Farmer EE.Surface-to-air signal[J]. Nature, 2001, 411(6839): 854-856.
|
[12] |
穆丹, 付建玉, 刘守安, 等. 虫害诱导的植物挥发物代谢调控机制研究进展[J]. 生态学报, 2010, 30(15): 4221-4233.
|
[13] |
Xin Z, Zhang Z, Chen Z, et al.Salicylhydroxamic acid (SHAM) negatively mediates tea herbivore-induced direct and indirect defense against the tea geometrid Ectropis obliqua[J]. J Plant Res, 2014, 127(4): 565-572.
|
[14] |
Xin Z, Li X, Li J, et al.Application of chemical elicitor (Z)-3-hexenol enhances direct and indirect plant defenses against tea geometrid Ectropis obliqua[J]. BioControl, 2016, 61(1): 1-12.
|
[15] |
Wang GC, Liang HY, Sun XL, et al. Antennal olfactory responses of Apanteles sp. (Hymenoptera: Braconidae) to herbivore-induced plant volatiles [J]. Adv Mater Res, 2012, 393/394/395: 604-607.
|
[16] |
Sun XL, Wang GC, Gao Y, et al.Volatiles emitted from tea plants infested by Ectropis obliqua larvae are attractive to conspecific moths[J]. J Chem Ecol, 2014, 40(10): 1080-1089.
|
[17] |
Sun XL, Li XW, Xin ZJ, et al.Development of synthetic volatile attractant for male Ectropis obliqua moths[J]. J Integr Agr, 2016, 15(7): 1532-1539.
|
[18] |
Yang ZW, Duan XN, Jin S, et al.Regurgitant derived from the tea geometrid Ectropis obliqua suppresses wound-induced polyphenol oxidases activity in tea plants[J]. J Chem Ecol, 2013, 39(6): 744-751.
|
[19] |
孙晓玲, 蔡晓明, 马春雷, 等. 茉莉酸甲酯和机械损伤对茶树叶片多酚氧化酶时序表达的影响[J]. 西北植物学报, 2011, 31(9): 1805-1810.
|
[20] |
Liu S, Han B.Differential expression pattern of an acidic 9/13 lipoxygenase in flower opening and senescence and in leaf response to phloem feeders in the tea plant[J]. BMC Plant Biol, 2010, 10(1): 228-243.
|
[21] |
张亚丽, 乔小燕, 陈亮. 茶树ACC氧化酶基因全长cDNA的克隆与表达分析[J] 茶叶科学, 2008, 28(6): 459-467.
|
[22] |
Mithofer A, Wanner G, Boland W.Effects of feeding Spodoptera littoralis on Lima bean leaves. II. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission[J]. Plant Physiol, 2005, 137(3): 1160-1168.
|
[23] |
Hilker M, Meiners T.Early herbivore alert: insect eggs induce plant defense[J]. J Chem Ecol, 2006, 32(7): 1379-1397.
|
[24] |
Tamiru A, Bruce TJA, Woodcock CM, et al.Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore[J]. Ecol Lett, 2011, 14: 1075-1083.
|
[25] |
Turlings TCJ, Wäckers FL.Recruitment of predators and parasitoids by herbivore-damaged plants [M]//Cardé RT, Millar J. Advances in insect chemical ecology. Cambridge: Cambridge University Press, 2004: 21-75.
|
[26] |
Kim J, Felton GW.Priming of antiherbivore defensive responses in plants[J]. Insect Sci, 2013, 20(3): 273-285.
|
[27] |
Delory BM, Delaplace P, Fauconnier ML, et al.Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions?[J]. Plant Soil, 2016, 402(1): 1-26.
|
[28] |
Arimura G, Ozawa R, Shimoda T, et al.Herbivory-induced volatiles elicit defence genes in lima bean leaves[J]. Nature, 2000, 406(6795): 512-514.
|
[29] |
Arimura G, Kost C, Boland W.Herbivore-induced, indirect plant defences[J]. BBA-Mol Cell Biol L, 2005, 1734(2): 91-111.
|
[30] |
Cai XM, Sun XL, Dong WX, et al.Herbivore species, infestation time, and herbivore density affect induced volatiles in tea plants[J]. Chemoecology, 2014, 24(1): 1-14.
|
[31] |
Engelberth J, Alborn HT, Schmelz EA, et al.Airborne signals prime plants against insect herbivore attack[J]. Proc Natl Acad Sci USA, 2004, 101(6): 1781-1785.
|
[32] |
Kessler A, Halitschke R, Diezel C, et al.Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata[J]. Oecologia, 2006, 148(2): 280-292.
|
[33] |
Matthes MC, Bruce TJA, Ton J, V, et al. The transcriptome of cis-jasmone-induced resistance in Arabidopsis thaliana and its role in indirect defence[J]. Planta, 2010, 232(5): 1163-1180.
|